首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   62篇
  国内免费   17篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   8篇
  2015年   11篇
  2014年   9篇
  2013年   13篇
  2012年   17篇
  2011年   11篇
  2010年   15篇
  2009年   16篇
  2008年   15篇
  2007年   14篇
  2006年   13篇
  2005年   17篇
  2004年   9篇
  2003年   16篇
  2002年   16篇
  2001年   13篇
  2000年   16篇
  1999年   13篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   13篇
  1991年   11篇
  1990年   14篇
  1989年   10篇
  1988年   5篇
  1987年   8篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1983年   8篇
  1982年   6篇
  1981年   7篇
  1979年   5篇
  1978年   10篇
  1977年   9篇
  1976年   4篇
  1973年   3篇
  1971年   4篇
  1967年   2篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
41.
Budding of C-type retroviruses begins when the viral Gag polyprotein is directed to the plasma membrane by an N-terminal membrane-binding (M) domain. While dispersed basic amino acids within the M domain are critical for stable membrane association and consequent particle assembly, additional residues or motifs may be required for specific plasma membrane targeting and binding. We have identified an assembly-defective Rous sarcoma virus (RSV) Gag mutant that retains significant membrane affinity despite having a deletion of the fourth alpha-helix of the M domain. Examination of the mutant protein's subcellular distribution revealed that it was not localized to the plasma membrane but instead was mistargeted to intracytoplasmic membranes. Specific plasma membrane targeting was restored by the addition of myristate plus a single basic residue, by multiple basic residues, or by the heterologous hydrophobic membrane-binding domain from the cellular Fyn protein. These results suggest that the fourth alpha-helix of the RSV M domain promotes specific targeting of Gag to the plasma membrane, either through a direct interaction with plasma membrane phospholipids or a membrane-associated cellular factor or by maintaining the conformation of Gag to expose specific plasma membrane targeting sequences.  相似文献   
42.
Friedberg F  Rhoads AR 《IUBMB life》2001,51(4):215-221
Calmodulin (CaM) is a major cellular sensor of calcium signaling, interacts with numerous proteins associated with cellular second messenger systems (e.g., cyclic AMP, nitric oxide), and is associated with neurosecretory activity. An identical CaM protein consisting of four helix-loop-helix regions that arose by gene duplication is encoded by three nonallelic mammalian genes that are some of the most highly conserved genes known. Differential tissue and cellular expression of each CaM suggest unique functions that promote strong selective preservation of these replicate, yet distinct, CaM genes in mammals. Each gene displays the same exon-intron arrangement but is characterized by distinct promoter elements and by unique 5'- and 3'-untranslated regions that are highly conserved among human, rat, and mouse. These distinct untranslated regions may permit regulation of CaM levels at discrete cellular sites during differentiation and in highly specialized cell types such as neurons.  相似文献   
43.
Human umbilical vein endothelial cells (HUVECs) are an endothelial model of replicative senescence. Oxidative stress, possibly due to dysfunctional mitochondria, is believed to play a key role in replicative senescence and atherosclerosis, an age-related vascular disease. In this study, we determined the effect of cell division on genomic instability, mitochondrial function, and redox status in HUVECs that were able to replicate for approximately 60 cumulative population doublings (CPD). After 20 CPD, the nuclear genome deteriorated and the protein content of the cell population increased. This indicated an increase in cell size, which was accompanied by an increase in oxygen consumption, ATP production, and mitochondrial genome copy number and approximately 10% increase in mitochondrial mass. The antioxidant capacity increased, as seen by an increase in reduced glutathione, glutathione peroxidase, GSSG reductase, and glucose-6-phosphate dehydrogenase. However, by CPD 52, the latter two enzymes decreased, as well as the ratio of mitochondrial-to-nuclear genome copies, the mitochondrial mass, and the oxygen consumption per milligram of protein. Our results signify that HUVECs maintain a highly reducing (GSH) environment as they replicate despite genomic instability and loss of mitochondrial function.  相似文献   
44.
Dietary oxidants like lipid hydroperoxides (LOOH) can perturb cellular glutathione/glutathione disulphide (GSH/GSSG) status and disrupt mucosal turnover. This study examines the effect of LOOH on GSH/GSSG balance and phase transitions in the human colon cancer CaCo-2 cell. LOOH at 1 or 5 micro m were noncytotoxic, but disrupted cellular GSH/GSSG and stimulated proliferative activity at 6 h that paralleled increases in ornithine decarboxylase activity, thymidine incorporation, expression of cyclin D1/cyclin-dependent kinase 4, phosphorylation of retinoblastoma protein, and cell progression from G0/G1 to S. At 24 h, LOOH-induced sustained GSH/GSSG imbalance mediated growth arrest at G0/G1 that correlated with suppression of proliferative activity and enhanced oxidative DNA damage. LOOH-induced cell transitions were effectively blocked by N-acetylcysteine. Collectively, the study shows that subtoxic LOOH levels induce CaCo-2 GSH/GSSG imbalance that elicits time-dependent cell proliferation followed by growth arrest. These results provide insights into the mechanism of hydroperoxide-induced disruption of mucosal turnover with implications for understanding oxidant-mediated genesis of gut pathology.  相似文献   
45.
Studies on the interaction of the murine translation initiation factor 4E with two new-synthesized cap-analogues, modified at C2' of 7-methylguanosine, have been performed by means of the fluorescence titration method. No difference in the binding affinity for eIF4E was observed compared with the "anti reversed" cap analogues, possessing the analogous modifications at C3'. Potential significance of the novel caps as research tools for examination of the nuclear cap binding complex CBC80/20 has been discussed.  相似文献   
46.
Eukaryotic translation initiation factor 4G-1 (eIF4G) plays a critical role in the recruitment of mRNA to the 43 S preinitiation complex. The central region of eIF4G binds the ATP-dependent RNA helicase eIF4A, the 40 S binding factor eIF3, and RNA. In the present work, we have further characterized the binding properties of the central region of human eIF4G. Both titration and competition experiments were consistent with a 1:1 stoichiometry for eIF3 binding. Surface plasmon resonance studies showed that three recombinant eIF4G fragments corresponding to amino acids 642-1560, 613-1078, and 975-1078 bound eIF3 with similar kinetics. A dissociation equilibrium constant of approximately 42 nm was derived from an association rate constant of 3.9 x 10(4) m(-1) s(-1) and dissociation rate constant of 1.5 x 10(-3) s(-1). Thus, the eIF3-binding region is included within amino acid residues 975-1078. This region does not overlap with the RNA-binding site, which suggests that eIF3 binds eIF4G directly and not through an RNA bridge, or the central eIF4A-binding site. Surprisingly, the binding of eIF3 and eIF4A to the central region was mutually cooperative; eIF3 binding to eIF4G increased 4-fold in the presence of eIF4A, and conversely, eIF4A binding to the central (but not COOH-terminal) region of eIF4G increased 2.4-fold in the presence of eIF3.  相似文献   
47.
A trypsin inhibitor was identified in extracts of adult Trichuris suis and culture fluids from 24-h in vitro cultivation of adult parasites. The inhibitor was isolated by acid precipitation, affinity chromatography (trypsin-agarose), and reverse phase HPLC as a single polypeptide with a molecular weight estimated at 6.6 kDa by laser desorption mass spectrometry. The purified inhibitor associated strongly with trypsin (equilibrium dissociation inhibitory constant (K(j)) of 3.07 nM) and chymotrypsin (K(j) = 24.5 nM) and was termed TsTCI. Elastase, thrombin, and factor Xa were not inhibited. The cDNA-derived amino acid sequence of the mature TsTCI consisted of 61 residues including 8 cysteine residues with a molecular mass of 6.687 kDa. The N-terminal region of TsTCI (46 residues) showed limited homology (36%) to a protease inhibitor from the hemolymph of the honeybee Apis mellifera, which is considered to be a member of the Ascaris inhibitor family. However, TsTCI did not display sequence homology with other members of this family or the distinctive cysteine residue pattern which distinguishes this family. However, similarity of a region of TsTCI (11 residues) with the reactive site regions of inhibitors from the nematodes Ascaris suum, Anisakis simplex, and Ancylostoma caninum was apparent.  相似文献   
48.
49.
50.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号