首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  25篇
  2023年   1篇
  2022年   1篇
  2013年   1篇
  2008年   1篇
  2004年   2篇
  2001年   1篇
  2000年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
11.
H J Rheinberger 《Biochimie》1991,73(7-8):1067-1088
During the last decade, a new model for the ribosomal elongation cycle has emerged. It is based on the finding that eubacterial ribosomes possess 3 tRNA binding sites. More recently, this has been confirmed for archaebacterial and eukaryotic ribosomes as well, and thus appears to be a universal feature of the protein synthetic machinery. Ribosomes from organisms of all 3 kingdoms harbor, in addition to the classical P and A sites, an E site (E for exit), into which deacylated tRNA is displaced during translocation, and from which it is expelled by the binding of an aminoacyl-tRNA to the A site at the beginning of the subsequent elongation round. The main features of the allosteric 3-site model of ribosomal elongation are the following: first, the third tRNA binding site is located 'upstream' adjacent to the P site with respect to the messenger, ie on the 5'-side of the P site. Second, during translocation, deacylated tRNA does not leave the ribosome from the P site, but co-translocates from the P site to the E site--when peptidyl-tRNA translocates from the A site to the P site. Third, deacylated tRNA is tightly bound to the E site in the post-translocational state, where it undergoes codon--anticodon interaction. Fourth, the elongating ribosome oscillates between 2 main conformations: (i), the pre-translocational conformer, where aminoacyl-tRNA (or peptidyl-tRNA) and peptidyl-tRNA (or deacylated tRNA) are firmly bound to the A and P sites, respectively; and (ii), the post-translocational conformer, where peptidyl-tRNA and deacylated tRNA are firmly bound to the P and E sites, respectively. The transition between the 2 states is regulated in an allosteric manner via negative cooperatively. It is modulated in a symmetrical fashion by the 2 elongation factors Tu and G. An elongating ribosome always maintains 2 high-affinity tRNA binding sites with 2 adjacent codon--anticodon interactions. The allosteric transition from the post- to the pre-translocational state is involved in the accuracy of aminoacyl-tRNA selection, and the maintenance of 2 codon--anticodon interactions helps to keep the messenger in frame during translation.  相似文献   
12.
Abstract

Under standard conditions (Mg2+/150 mM NH4 +) ribosomes can quantitatively participate in tRNA binding at Mg2+ concentrations of 12 to 15 mM. The overall poly(U)-directed Phe incorporation and the extent of tRNA binding to either P,E or A sites decrease in a parallel manner when the Mg2+ concentration is lowered below 10 mM. At 4 mM the inactivation amounts to about 80%. The coordinate inactivation of all three binding sites is accompanied by an increasing impairment of the ability to translocate A-site bound AcPhe-tRNA to the P site. The translocation efficiency is already reduced at 10 mM Mg2+, and is completely blocked at 6—8 mM.

The severe inactivation seen at 6 mM Mg2+ vanishes when the polyamines spermine (0.6 mM) and spermidine (0.4 mM) are present in the assay; tRNA binding again becomes quantitative, the total Phe synthesis even exceeds that observed in the absence of polyamines by a factor of 4. In the presence of polyamines and low Mg2+ (3 and 6 mM) two essential features of the allosteric three-site model (Rheinberger and Nierhaus,J.Biol. Chem. 261, 9133 (1986)) are demonstrated. 1) Deacylated tRNA is not released from the P site, but moves to the E site during the course of translocation. 2) Occupation of the E site reduces the A site affinity and vice versa (allosteric interactions between E and A sites).

The quality of an in vitro system for protein synthesis can be assessed by two criteria. First, the incubation conditions must allow a near quantitative tRNA binding. Secondly, protein synthesis should proceed with near in vivo rate and accuracy. The 3 mM Mg2+/NH4 +/polyamine- system seems to be the best compromise at present between these two requirements.  相似文献   
13.
The circumstances under which classical genetics became established at the turn of the nineteenth century have become an integral part of the standard narrative on the history of genetics. Yet, despite considerable scholarly efforts, it has remained a matter of debate how exactly the so-called 'rediscovery' of Mendel's laws came about around 1900. In this situation, unpublished research records can be invaluable tools to arrive at a more substantial and more satisfying picture of the order of historical events. This paper makes extended use of the research protocols covering Carl Correns' hybridisation experiments with Pisum sativum between 1896 and 1899. The resulting reconstruction sketches the portrait of a scientist following a particular research question--xenia--struggling with his experimental material, and slowly building up an epistemic regime in which questions and observations could acquire a relevance which did not strike Correns when he first took note of them. The microhistorical gaze through the magnifying glass of research notes reveals the kind of delays that appear to be constitutive for empirically-driven thinking in general. The research notes of Correns help not only to make this point, they also display some of the intricacies and material peculiarities which characterise the experimental process of hybridisation and the particular type of inferences it allows one to make.  相似文献   
14.
A labeled tRNA present at the A, P or E site can be partially chased from the ribosome, a cognate nonlabeled tRNA as chasing substrate being 3-12-times more efficient than non-cognate tRNA at a molar ratio tRNA: 70 S = 10:1. These findings indicate that a tRNA bound to a programmed ribosome undergoes codon-anticodon interaction at all three sites (A, P and E site). Furthermore, both labeled tRNA present on the ribosome can be chased more effectively with cognate than with non-cognate substrate at the same time. This finding provides strong evidence that both tRNAs present on the ribosome exhibit simultaneous codon-anticodon interaction. This is valid for both the pretranslocational state (Ac[3H]Lys-tRNALys in the A and [14C]tRNALys in the P site) as well as the posttranslocational state (Ac[3H]Lys-tRNALys in the P and [14C]tRNALys in the E site).  相似文献   
15.
We used an enrichment technique to isolate 18 novel di and tri microsatellites for the socially monogamous lizard Tiliqua rugosa. These loci were amplified in conjunction with previously described loci in two and three PCR multiplexes for T. rugosa and the endangered T. adelaidensis, respectively. The loci were highly polymorphic in both species, exhibiting between 2 and 32 alleles with observed heterozygosity ranging from 0.43 to 0.96. These markers will be useful for population-level analyses and can contribute to a genetic foundation for conservation strategies for the endangered T. adelaidensis.  相似文献   
16.
Much of the early history of developmental and physiological genetics in Germany remains to be written. Together with Carl Correns and Richard Goldschmidt, Alfred Kühn occupies a special place in this history. Trained as a zoologist in Freiburg im Breisgau, he set out to integrate physiology, development and genetics in a particular experimental system based on the flour moth Ephestia kühniella Zeller. This paper is meant to reconstruct the crucial steps in the experimental pathway that led Kühn and his collaborators at the University of Göttingen, and later at the Kaiser Wilhelm Institutes of Biology and Biochemistry in Berlin, to formulate, in their specific way, what later became known as the “one gene – one enzyme hypothesis.” Special attention will be given to the interaction of the different parts of Kühn's Ephestia-based project, which were rooted in different research traditions. The paper retraces how, roughly between 1925 and 1945, these elements came to form a mixed experimental set-up composed of genetic, embryological, physiological and, finally, biochemical constituents. Accordingly, emphasis is laid on the development of the terminology in which the results were cast, and how it reflected the hybrid state of an experimental system successively acquiring new epistemic layers.  相似文献   
17.
18.
19.
We have previously proposed a three-site model for the elongation cycle. The model is characterized by the presence of two tRNAs on the ribosome before and after translocation. We have already shown a first consequence of the model, namely that the translocation reaction is not coupled with a release of deacylated tRNA. Here we demonstrate the following conclusions. Occupation of the A site triggers the tRNA release from the E site, i.e. the A site occupation induces a drastic decrease in the affinity of the E site for deacylated tRNA. In the concentration range of deacylated tRNA in which a ribosome binds a second tRNA in addition to that one already present at the P site the deacylated tRNA does not compete for one and the same binding site with an A site ligand (AcPhe-tRNA) at 37 degrees C. It follows that the second deacylated tRNA binds to a site, the E site, which is physically distinct from the A site. When the ribosome binds a deacylated tRNA at the E site (in addition to a tRNA at the P site), the A site cannot be occupied by AcPhe-tRNA at 0 degree C and only poorly by the ternary complex elongation factor Tu . Phe-tRNA . guanyl-5'-yl imidodiphosphate. At 37 degrees C a significant A site binding is observed, with a corresponding tRNA release from the E site. In contrast, if the E site is free and only the P site occupied, the A site can bind significant amounts of charged tRNA already at 0 degree C. It follows that an occupied E site induces a low-affinity state of the A site. Thus, the ribosome always contains two high-affinity binding sites, which are A and P sites before and P and E sites after translocation. A and E sites are allosterically linked in a bidirectional manner.  相似文献   
20.
Poly(U)-programmed 70S ribosomes can be shown to be 80% to 100% active in binding the peptidyl-tRNA analogue AcPhe-tRNA to their A or P sites, respectively. Despite this fact, only a fraction of such ribosomes primed with AcPhe-tRNA participate in poly(U)-directed poly(Phe) synthesis (up to 65%) at 14 mM Mg2+ and 160 mM NH4+. Here it is demonstrated that the apparently 'inactive' ribosomes (greater than or equal to 35%) are able to participate in peptide-bond formation, but lose their nascent peptidyl-tRNA at the stage of Ac(Phe)n-tRNA, with n greater than or equal to 2. The relative loss of early peptidyl-tRNAs is largely independent of the degree of initial saturation with AcPhe-tRNA and is observed in a poly(A) system as well. This observation resolves a current controversy concerning the active fraction of ribosomes. The loss of Ac(Phe)n-tRNA is reduced but still significant if more physiological conditions for Ac(Phe)n synthesis are applied (3 mM Mg2+, 150 mM NH4+, 2 mM spermidine, 0.05 mM spermine). Chloramphenicol (0.1 mM) blocks the puromycin reaction with AcPhe-tRNA as expected but, surprisingly, does not affect the puromycin reaction with Ac(Phe)2-tRNA nor peptide bond formation between AcPhe-tRNA and Phe-tRNA. The drug facilitates the release of Ac(Phe)2-4-tRNA from ribosomes at 14 mM Mg2+ while it hardly affects the overall synthesis of poly(Phe) or poly(Lys).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号