首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1400篇
  免费   147篇
  2022年   7篇
  2021年   17篇
  2020年   11篇
  2019年   12篇
  2018年   16篇
  2017年   18篇
  2016年   37篇
  2015年   50篇
  2014年   65篇
  2013年   58篇
  2012年   82篇
  2011年   79篇
  2010年   63篇
  2009年   49篇
  2008年   71篇
  2007年   78篇
  2006年   68篇
  2005年   82篇
  2004年   87篇
  2003年   59篇
  2002年   56篇
  2001年   49篇
  2000年   67篇
  1999年   44篇
  1998年   30篇
  1997年   15篇
  1996年   15篇
  1995年   13篇
  1994年   16篇
  1993年   7篇
  1992年   28篇
  1991年   28篇
  1990年   23篇
  1989年   23篇
  1988年   19篇
  1987年   18篇
  1986年   12篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   7篇
  1976年   8篇
  1975年   3篇
  1968年   3篇
  1965年   3篇
  1959年   2篇
排序方式: 共有1547条查询结果,搜索用时 46 毫秒
41.
A comparative study of nitrate-limited growth and nitrate uptake was carried out in chemostat cultures of Ankistrodesmus falcatus (Corda) Ralfs., Asterionella formosa Hass., and Fragilaria crotonensis Kit. In each species growth rate (μ) was related to total cell nitrogen or cell quota (q) by the empirical Droop growth function. Nitrate uptake was a function of both external N concentration and q. The apparent maximum uptake rate (Vm') at a given μ was inversely related to q – q0, where q0 is the minimum quota. The apparent half-saturation constant for uptake, (Km') appears to show a slight inverse trend with μ, although statistical analysis shows that this trend is inconclusive. When q approaches q0, Vm' is several orders of magnitude greater than μq, the calculated steady-state uptake rate. As q increases, however, the difference between these two variables decreases sharply until q approaches qm, the cell quota for nitrogen-rich cells. At this point the difference between μq and Vm' disappears. This behavior is explained by the feedback regulation of N uptake. The inverse relationship between Vm' and q – q0 can be described by an empirical three-parameter equation.  相似文献   
42.
The optimum atomic ratio of N to P, the ratio at which one nutrient limitation changes over to the other, was determined in seven species of freshwater planktonic algae. The ratio varied over a wide range among species; the average for these species was 17. If the cellular nutrient ratios in marine species are comparable with those in freshwater organisms, Redfield's ratio of 15 is remarkably close to the average. Cellular N:P ratios varied over a 24-h period under a light:dark cycle. The variation of the optimum ratio between species and diel change in cellular N:P ratios within a species could play an important role in population dynamics by enhancing the probability of coexistence of species.  相似文献   
43.
Antibodies against purified (Na+ + K+)ATPase from the rectal gland of Squalus acanthias, as well as against its catalytic subunit, inhibited ouabain binding by as much as 50%. However, antibodies against the glycoprotein subunit did not inhibit ouabain binding. These data suggest that binding of antibody against the catalytic subunit to the enzyme either covers the ouabain binding site or destroys its conformation, while binding of antibody against the glycoprotein has no such effect.  相似文献   
44.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
45.
A stopped-flow spectrometer is used for ATP assay by firefly luciferase-luciferin method. It allows one to record initial rise of the light intensity and to differentiate the light produced due to the conversion of ADP to ATP by nucleoside diphosphokinase in the firefly lantern when other nucleoside triphosphates are present. Addition of luciferin (0.27 mm) to luciferase extract increases the light intensity by a factor of 50–100. This method can be used to measure ATP in the picomole range.  相似文献   
46.
The Schizosaccharomyces pombe pfh1+ gene (PIF1 homolog) encodes an essential enzyme that has both DNA helicase and ATPase activities and is implicated in lagging strand DNA processing. Mutations in the pfh1+ gene suppress a temperature-sensitive allele of cdc24+, which encodes a protein that functions with Schizosaccharomyces pombe Dna2 in Okazaki fragment processing. In this study, we describe the enzymatic properties of the Pfh1 helicase and the genetic interactions between pfh1 and cdc24, dna2, cdc27 or pol 3, all of which are involved in the Okazaki fragment metabolism. We show that a full-length Pfh1 fusion protein is active as a monomer. The helicase activity of Pfh1 displaced only short (<30 bp) duplex DNA regions efficiently in a highly distributive manner and was markedly stimulated by the presence of a replication-fork-like structure in the substrate. The temperature-sensitive phenotype of a dna2-C2 or a cdc24-M38 mutant was suppressed by pfh1-R20 (a cold-sensitive mutant allele of pfh1) and overexpression of wild-type pfh1+ abolished the ability of the pfh1 mutant alleles to suppress dna2-C2 and cdc24-M38. Purified Pfh1-R20 mutant protein displayed significantly reduced ATPase and helicase activities. These results indicate that the simultaneous loss-of-function mutations of pfh1+ and dna2+ (or cdc24+) are essential to restore the growth defect. Our genetic data indicate that the Pfh1 DNA helicase acts in concert with Cdc24 and Dna2 to process single-stranded DNA flaps generated in vivo by pol δ-mediated lagging strand displacement DNA synthesis.  相似文献   
47.
The results described in the accompanying article support the model in which glucosylphosphoryldolichol (Glc-P-Dol) is synthesized on the cytoplasmic face of the ER, and functions as a glucosyl donor for three Glc-P-Dol:Glc0-2Man9-GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) in the lumenal compartment. In this study, the enzymatic synthesis and structural characterization by NMR and electrospray-ionization tandem mass spectrometry of a series of water-soluble beta-Glc-P-Dol analogs containing 2-4 isoprene units with either the cis - or trans - stereoconfiguration in the beta-position are described. The water- soluble analogs were (1) used to examine the stereospecificity of the Glc-P-Dol:Glc0-2Man9GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) and (2) tested as potential substrates for a membrane protein(s) mediating the transbilayer movement of Glc-P-Dol in sealed ER vesicles from rat liver and pig brain. The Glc-P-Dol-mediated GlcTases in pig brain microsomes utilized [3H]Glc-labeled Glc-P-Dol10, Glc-P-(omega, c )Dol15, Glc-P(omega, t,t )Dol20, and Glc-P-(omega, t,c )Dol20as glucosyl donors with [3H]Glc3Man9GlcNAc2-P-P-Dol the major product labeled in vitro. A preference was exhibited for C15-20 substrates containing an internal cis -isoprene unit in the beta-position. In addition, the water-soluble analog, Glc-P-Dol10, was shown to enter the lumenal compartment of sealed microsomal vesicles from rat liver and pig brain via a protein-mediated transport system enriched in the ER. The properties of the ER transport system have been characterized. Glc- P-Dol10was not transported into or adsorbed by synthetic PC-liposomes or bovine erythrocytes. The results of these studies indicate that (1) the internal cis -isoprene units are important for the utilization of Glc-P-Dol as a glucosyl donor and (2) the transport of the water- soluble analog may provide an experimental approach to assay the hypothetical "flippase" proposed to mediate the transbilayer movement of Glc-P-Dol from the cytoplasmic face of the ER to the lumenal monolayer.   相似文献   
48.
We developed a simple and universal method, by modifying the universal CAS (Chrome azurol S) assay, measuring siderophores in various biological fluids. We named the assay as CAS agar diffusion (CASAD) assay. CAS plate devoid of nutrients was prepared by using Bacto-agar (1.5%, w/v) as a matrix. Holes with 5-mm-diameter were punched on the CAS agar plate. Each hole was added by 35 microl of the test fluids containing Desferal that was twofold serially diluted. After incubating at 37 degrees C or room temperature for 4-8 h, the size of orange haloes formed around the holes was measured. The size of orange haloes correlated well with the concentration of Desferal in all the biological fluids tested in this study. CASAD assay showed consistent results in wide pH range from 5 to 9. Addition of iron to the test fluids containing Desferal decreased the size of orange haloes in a dose-dependent manner, which suggests that the CASAD assay detects only iron non-bound siderophore. These results suggest that CASAD assay would serve as a simple, stable, and highly reproducible test for screening and quantitative siderophore analysis in biological fluids.  相似文献   
49.
A novel facultatively anaerobic strain DH1T was isolated from deep sub-seafloor sediment at a depth of 900 m below the seafloor off Seo-do (the west part of Dokdo Island) in the East Sea of the Republic of Korea. The new strain was characterized using polyphasic approaches. The isolate was Gram-stain-negative, motile by gliding, non-spore-forming rods, oxidase-negative, and catalase-positive; and formed colonies of orange-red color. The NaCl range for growth was 0.5–7.0% (w/v) and no growth was observed in the absence of NaCl. The isolate grew optimally at 30°C, with 2% (w/v) NaCl and at pH 7. The cell-wall hydrolysates contained ribose as a major sugar. The DNA G+C content was 40.8 mol%. The closest related strains are Sunxiuqinia faeciviva JAM-BA0302T and Sunxiuqinia elliptica DQHS-4T (97.9 and 96.3% sequence similarity, respectively). The level of DNA-DNA relatedness between strain DH1T and S. faeciviva JAM-BA0302T was around 41% (but only 6% between DH1T and S. elliptica DQHS-4T). The major cellular fatty acids of the isolate were contained iso-C15:0 (25.9%), anteiso-C15:0 (16.7%), and summed feature 9 (comprising C16:0 3-OH and/or unknown fatty acid of dimethylacetal ECL 17.157; 13.2%). The predominant menaquinone was MK-7. On the basis of polyphasic evidence from this study, the isolate was considered to represent a novel species of the genus Sunxiuqinia, for which the name Sunxiuqinia dokdonensis sp. nov. is proposed; the type strain is DH1T (=KCTC 32503T =CGMCC 1.12676T =JCM 19380T).  相似文献   
50.
Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号