首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   29篇
  2022年   2篇
  2021年   7篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   9篇
  2014年   8篇
  2013年   15篇
  2012年   26篇
  2011年   27篇
  2010年   19篇
  2009年   6篇
  2008年   12篇
  2007年   8篇
  2006年   14篇
  2005年   9篇
  2004年   9篇
  2003年   12篇
  2002年   6篇
  2001年   7篇
  2000年   8篇
  1999年   10篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   7篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1969年   2篇
  1968年   4篇
  1966年   3篇
  1955年   2篇
  1952年   2篇
  1944年   2篇
  1924年   3篇
  1916年   1篇
  1915年   3篇
  1912年   1篇
排序方式: 共有328条查询结果,搜索用时 687 毫秒
81.
Isolation of human subtype H3N2 influenza viruses in embryonated chicken eggs yields viruses with amino acid substitutions in the hemagglutinin (HA) that often affect binding to sialic acid receptors. We used a glycan array approach to analyze the repertoire of sialylated glycans recognized by viruses from the same clinical specimen isolated in eggs or cell cultures. The binding profiles of whole virions to 85 sialoglycans on the microarray allowed the categorization of cell isolates into two groups. Group 1 cell isolates displayed binding to a restricted set of α2-6 and α2-3 sialoglycans, whereas group 2 cell isolates revealed receptor specificity broader than that of their egg counterparts. Egg isolates from group 1 showed binding specificities similar to those of cell isolates, whereas group 2 egg isolates showed a significantly reduced binding to α2-6- and α2-3-type receptors but retained substantial binding to specific O- and N-linked α2-3 glycans, including α2-3GalNAc and fucosylated α2-3 glycans (including sialyl Lewis x), both of which may be important receptors for H3N2 virus replication in eggs. These results revealed an unexpected diversity in receptor binding specificities among recent H3N2 viruses, with distinct patterns of amino acid substitution in the HA occurring upon isolation and/or propagation in eggs. These findings also suggest that clinical specimens containing viruses with group 1-like receptor binding profiles would be less prone to undergoing receptor binding or antigenic changes upon isolation in eggs. Screening cell isolates for appropriate receptor binding properties might help focus efforts to isolate the most suitable viruses in eggs for production of antigenically well-matched influenza vaccines.Influenza A viruses are generally isolated and propagated in embryonated chicken eggs or in cultures of cells of mammalian origin. Human influenza viruses were previously noted to acquire mutations in the hemagglutinin (HA) gene upon isolation and culture in the allantoic sac of embryonated chicken eggs (herein simply referred to as “eggs”) compared to the sequences of those isolated in mammalian cell substrates (herein referred to as “cells”) (29, 30, 44, 53, 58). These mutations resulted in amino acid substitutions that were found to mediate receptor specificity changes and improved viral replication efficiency in eggs (37). In general, cell-grown viruses are assumed to be more similar than their egg-grown counterparts to the viruses present in respiratory secretions (30, 56). Since their emergence in 1968, influenza A (H3N2) viruses have evolved and adapted to the human host while losing their ability to be efficiently isolated and replicate in eggs, particularly after 1992 (37, 42, 48). The rate of isolation of H3N2 clinical specimens after inoculation into eggs can be up to ∼30 times lower than that in mammalian cell cultures, highlighting the strong selective pressure for the emergence of sequence variants (77).Virtually all influenza vaccines for human use were licensed decades ago by national regulatory authorities, which used a product manufactured from influenza viruses isolated and propagated exclusively in eggs; therefore, cell culture isolates have been unacceptable for this purpose (41, 71). The antigen composition of influenza vaccines requires frequent updates (every 2 years, on average) to closely match their antigenic properties to the most prevalent circulating antigenic drift variant viruses (51). The limited availability of H3N2 viruses isolated in eggs has on one or more occasions delayed vaccine composition updates and may have reduced the efficacy of vaccination against new antigenically drifted viruses (3, 34, 37).Entry of influenza viruses into host cells is mediated by HA, which binds to sialic acid containing glycoconjugates on the surface of epithelial cells in the upper respiratory tract (2, 13). The nature of the linkage between sialic acid and the vicinal sugar (usually galactose) varies in different host species and tissues and may therefore determine whether an influenza virus binds to and infects avian or human cells (40, 46, 59, 62, 72-75). Human influenza viruses preferentially bind to α2-6-linked sialic acids, and avian viruses predominantly bind to α2-3-linked sialic acids (59). Previous studies with chicken embryo chorioallantoic membranes revealed differential lectin binding, suggesting that α2-3-linked but not α2-6-linked sialosides are present on the epithelial cells (28). Human H3N2 viruses isolated in cell culture were reported to bind with a high affinity to α2-6-linked sialosides, while viruses isolated in eggs often had increased specificity for α2-3-linked sialosides (19, 20, 28). The functional classification of avian and mammalian influenza virus receptors is further complicated since in vitro and tissue-binding assays have led to new working hypotheses involving glycan chain length, topology, and the composition of the inner fragments of the carbohydrate chain as additional receptor specificity determinants (9, 17, 65, 66, 82). However, the significance of these in vitro properties remains unknown, since the structures of the natural sialosides on host cells that are used for infectious virus entry are undefined.The techniques most widely used to study the interactions of the influenza virus with host cell receptors employ animal cells in various assay formats (36, 57, 59, 64, 69). To overcome the problems of cell-based techniques, new assays that rely on labeled sialyl-glycoproteins or polymeric sialoglycans have been developed (18). However, these assays are limited by having only a few glycans available in polymeric form and offer low throughput. In contrast, glycan microarrays can assess virus binding to multiple well-defined glycans simultaneously. Previous work with influenza live or β-propiolactone (BPL)-inactivated virions as well as recombinantly produced HAs revealed a good correlation with receptor specificity compared to that achieved by other methods of analysis (4, 11, 57, 58, 65-68).Here we have compared paired isolates derived in eggs or cell cultures from the single clinical specimen to better understand their receptor binding specificity and its implications for vaccine production. We examined the differences in the sequences of the HAs between egg- and cell-grown isolates and analyzed their receptor binding profiles using glycan microarrays. Sequence analysis of the HA and glycan binding results revealed two distinct groups of viruses, with many egg isolates showing unexpectedly reduced levels of binding to α2-3 and α2-6 sialosides compared to the levels for the viruses isolated in mammalian cells. Furthermore, these studies highlighted that specific glycans may be important for H3N2 virus growth in eggs.  相似文献   
82.
Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg)7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax''s anticancer efficacy.  相似文献   
83.
Previous studies have suggested that the caspase 8 inhibitor FLIP is a promising anti-cancer therapeutic target. In this study, we characterised a novel FLIP-targeted antisense phosphorothioate oligonucleotide (AS PTO). FLIP AS and control PTOs were assessed in vitro in transient transfection experiments and in vivo using xenograft models in Balb/c nude mice. FLIP expression was assessed by QPCR and Western. Apoptosis induction was determined by flow cytometry and Western. Of 5 sequences generated, one potently down-regulated FLIP. AS PTO-mediated down-regulation of FLIP resulted in caspase 8 activation and apoptosis induction in non-small cell lung (NSCLC) cells but not in normal lung cells. Similar results were observed in colorectal and prostate cancer cells. Furthermore, the FLIP AS PTO sensitized cancer cells but not normal lung cells to apoptosis induced by rTRAIL. Moreover, the FLIP AS PTO enhanced chemotherapy-induced apoptosis in NSCLC cells. Importantly, compared to a control non-targeted PTO, intra-peritoneal delivery of FLIP AS PTO inhibited the growth of NSCLC xenografts and enhanced the in vivo antitumour effects of cisplatin. We have identified a novel FLIP-targeted AS PTO that has in vitro and in vivo activity and which therefore has potential for further pre-clinical development.  相似文献   
84.
Autophagy is a conserved catabolic stress response pathway that is increasingly recognized as an important component of both innate and acquired immunity to pathogens. The activation of autophagy during infection not only provides cell-autonomous protection through lysosomal degradation of invading pathogens (xenophagy), but also regulates signaling by other innate immune pathways. This review will focus on recent advances in our understanding of three major areas of the interrelationship between autophagy and innate immunity, including how autophagy is triggered during infection, how invading pathogens are targeted to autophagosomes, and how the autophagy pathway participates in “tuning” the innate immune response.  相似文献   
85.
Recombinant interferon-beta-1b (IFN-beta-1b) is used clinically in the treatment of multiple sclerosis. In common with many biological ligands, IFN-beta-1b exhibits a relatively short serum half-life, and bioavailability may be further diminished by neutralizing antibodies. While PEGylation is an approach commonly employed to increase the blood residency time of protein therapeutics, there is a further requisite for molecular engineering approaches to also address the stability, solubility, aggregation, immunogenicity and in vivo exposure of therapeutic proteins. We investigated these five parameters of recombinant human IFN-beta-1b in over 20 site-selective mono-PEGylated or multi-PEGylated IFN-beta-1b bioconjugates. Primary amines were modified by single or multiple attachments of poly(ethylene glycol), either site-specifically at the N-terminus, or randomly on the 11 lysines. In two alternate approaches, site-directed mutagenesis was independently employed in the construction of designed IFN-beta-1b variants containing either a single free cysteine or lysine for site-specific PEGylation. Optimization of conjugate preparation with 12 kDa, 20 kDa, 30 kDa, and 40 kDa amine-selective PEG polymers was achieved, and a comparison of the structural and functional properties of the IFN-beta-1b proteins and their PEGylated counterparts was conducted. Peptide mapping and MALDI-TOF mass spectrometric analysis confirmed the attachment sites of the PEG polymer. Independent biochemical and bioactivity analyses, including antiviral and antiproliferation bioassays, circular dichroism, capillary electrophoresis, flow cytometric profiling, reversed phase and size exclusion HPLC, and immunoassays demonstrated that the functional activities of the designed IFN-beta-1b conjugates were maintained, while the formation of soluble or insoluble aggregates of IFN-beta-1b was ameliorated. Immunogenicity and pharmacokinetic studies of selected PEGylated IFN-beta-1b compounds in mice and rats demonstrated both diminished IgG responses, and over 100-fold expanded AUC exposure relative to the unmodified protein. The results demonstrate the capacity of this macromolecular engineering strategy to address both pharmacological and formulation challenges for a highly hydrophobic, aggregation-prone protein. The properties of a lead mono-PEGylated candidate, 40 kDa PEG2-IFN-beta-1b, were further investigated in formulation optimization and biological studies.  相似文献   
86.
In an effort to increase the transfer of training to sport performance, sport-specific training programs should be developed. Competition modeling has been proposed as a method for developing metabolic conditioning programs that mimic competition environments. This process involves both a qualitative and quantitative evaluation of competitive conditions of a sport. The purpose of this observational research was to construct a competition model of American football for 3 different levels: high school, collegiate, and professional. Observations of 30 football games at different levels were conducted and modeled with respect to length of play, length of recovery between plays, plays per series, and stoppages per series. The resultant data demonstrated that differences in these variables exist between levels of play. High school plays lasted, on average, 5.6 +/- 2.0 seconds and were slightly longer than college (+0.47 seconds) and professional (+0.44 seconds) plays. The average time for recovery between plays was longest in National Football League (NFL) games and shortest in high school. On average, the work to recovery ratio was most strenuous in high school (1:5.5), college (1:6.1), and NFL (1:6.2), respectively. Differences in the identified competitive conditions, although slight, do exist among high school, collegiate, and professional football. In order to design specific metabolic training programs for American football, coaches should consider the identified models. Exercise to rest ratios and volume of work performed in a training session should be designed to ensure that players are preparing specifically for identified game conditions.  相似文献   
87.
Critical to multidimensional sport conditioning is a systematic knowledge of the interactions between fitness components, as well as the transference relationships to performance. The purpose of this investigation was to examine the relationships between lower body muscular strength and several fundamental explosive performance measures. Fifty-four men and women collegiate athletes were tested to determine (a) lower-body muscular strength (1 repetition maximum barbell back squat), (b) countermovement vertical jump height and peak power output, (c) standing broad jump distance, (d) agility (cone T-test time), (e) sprint acceleration (m.s(-2)), and (f) sprint velocity (m.s(-1)). Analyses were performed using Pearson r correlations to examine these relationships. Partial correlations tested for relationships between performance measures while controlling for muscular strength. T-tests were performed to assess the difference between men and women. Correlation data demonstrated that significant (p < 0.01) strong linear relationships were indicated between muscular strength and power, as well as every sport-performance field tests. However, when controlling for strength with partial correlation, each of these relationships appreciably diminished. Significant differences (p < 0.05) were found between men and women for each of the performance tests. Muscular strength, peak power output, vertical jumping ability, standing broad jump, agility, sprint acceleration, and sprint velocity were all shown to be very highly related. Further examination demonstrated that body mass-adjusted muscular strength is more highly related to performance measures than is absolute muscular strength. Current correlation data provide a quantified look at the interaction between muscular fitness components, as well as the transfer relationship to several athletic-specific performance measures.  相似文献   
88.
The diverse functions of histone acetyltransferase complexes   总被引:31,自引:0,他引:31  
  相似文献   
89.
This paper summarizes recent advances in understanding the links between the cell's ability to maintain integrity of its mitochondrial genome and mitochondrial genetic diseases. Human mitochondrial DNA is replicated by the two-subunit DNA polymerase gamma (polgamma). We investigated the fidelity of DNA replication by polgamma with and without exonucleolytic proofreading and its p55 accessory subunit. Polgamma has high base substitution fidelity due to efficient base selection and exonucleolytic proofreading, but low frameshift fidelity when copying homopolymeric sequences longer than four nucleotides. Progressive external ophthalmoplegia (PEO) is a rare disease characterized by the accumulation of large deletions in mitochondrial DNA. Recently, several mutations in the polymerase and exonuclease domains of the human polgamma have been shown to be associated with PEO. We are analyzing the effect of these mutations on the human polgamma enzyme. In particular, three autosomal dominant mutations alter amino acids located within polymerase motif B of polgamma. These residues are highly conserved among family A DNA polymerases, which include T7 DNA polymerase and E.coli pol I. These PEO mutations have been generated in polgamma to analyze their effects on overall polymerase function as well as the effects on the fidelity of DNA synthesis. One mutation in particular, Y955C, was found in several families throughout Europe, including one Belgian family and five unrelated Italian families. The Y955C mutant polgamma retains a wild-type catalytic rate but suffers a 45-fold decrease in apparent binding affinity for the incoming dNTP. The Y955C derivative is also much less accurate than is wild-type polgamma, with error rates for certain mismatches elevated by 10- to 100-fold. The error prone DNA synthesis observed for the Y955C polgamma is consistent with the accumulation of mtDNA mutations in patients with PEO. The effects of other polgamma mutations associated with PEO are discussed.  相似文献   
90.
Recombinant human adenovirus (rhAd) has been used extensively for functional protein expression in mammalian cells including those of human and nonhuman origin. High-level protein production by rhAd vectors is expected in their permissive host cells, such as the human embryonic kidney 293 (HEK293) cell line. This is attributed primarily to the permissiveness of HEK293 to rhAd infection and their ability to support viral DNA replication by providing the missing El proteins. However, the HEK293 cells tend to suffer from cytopathic effect (CPE) as a result of virus replication. Under these circumstances, the host cell function is compromised and the culture viability will be reduced. Consequently, newly synthesized polypeptides may not be processed properly at posttranslational levels. Therefore, the usefulness of HEK293 cells for the expression of complex targets such as secreted proteins could be limited. In the search for a more robust cell line as a production host for rhAd expression vectors, a series of screening experiments was performed to isolate clones from Chinese hamster ovary-K1 (CHO-K1) cells. First, multiple rounds of infection of CHO-K1 cells were performed utilizing an rhAd expressing GFP. After each cycle of infection, a small population of CHO cells with high GFP levels was enriched by FACS. Second, individual clones more permissive to human adenovirus infection were isolated from the highly enriched subpopulation by serial dilution. A single clone, designated CHO-K1-C5, was found to be particularly permissive to rhAd infection than the parental pool and has served as a production host in the successful expression of several secreted proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号