首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   9篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   3篇
  2013年   9篇
  2012年   12篇
  2011年   6篇
  2010年   12篇
  2009年   11篇
  2008年   9篇
  2007年   10篇
  2006年   11篇
  2005年   8篇
  2004年   12篇
  2003年   7篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1973年   1篇
  1972年   2篇
  1966年   1篇
排序方式: 共有175条查询结果,搜索用时 31 毫秒
11.
Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites.  相似文献   
12.
Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy and biochemical assays have shown that Schwann cells remove excess cytoplasmic organelles during myelination through macroautophagy. Inhibition of autophagy via Schwann cell-specific removal of ATG7, an essential molecule for macroautophagy, using a conditional knockout strategy, resulted in abnormally enlarged abaxonal cytoplasm in myelinating Schwann cells that contained a large number of ribosomes and an atypically expanded endoplasmic reticulum. Small fiber hypermyelination and minor anomalous peripheral nerve functions are observed in this mutant. Rapamycin-induced suppression of mTOR activity during the early postnatal period enhanced not only autophagy but also developmental reduction of myelinating Schwann cells cytoplasm in vivo. Together, our findings suggest that autophagy is a regulatory mechanism of Schwann cells structural plasticity during myelination.  相似文献   
13.
This study was conducted to assess the genetic diversity and population structure of 139 Lycium chinense accessions using 18 simple sequence repeat (SSR) markers. In total, 108 alleles were detected. The number of alleles per marker locus ranged from two to 17, with an average of six. The gene diversity and polymorphism information content value averaged 0.3792 and 0.3296, with ranges of 0.0793 to 0.8023 and 0.0775 to 0.7734, respectively. The average heterozygosity was 0.4394. The model-based structure analysis revealed the presence of three subpopulations, which was consistent with clustering based on genetic distance. An AMOVA analysis showed that the between-population component of genetic variance was less than 15.3%, in contrast to 84.7% for the within-population component. The overall FST value was 0.1178, indicating a moderate differentiation among groups. The results could be used for future L. chinense allele mining, association mapping, gene cloning, germplasm conservation, and designing effective breeding programs.  相似文献   
14.
Elevated levels of interleukin-1 (IL-1) have been shown to amplify the inflammatory response against periodontopathogenic bacteria. In humans, polymorphisms in the IL1A and IL1B genes are the most well-studied genetic polymorphisms associated with periodontal disease (PD). In contrast to human, there is a lack of knowledge on the genetic basis of canine PD. A case–control study was conducted in which a molecular analysis of dog IL1A and IL1B genes was performed. Of the eight genetic variants identified, seven in IL1A gene and one in IL1B gene, IL1A/1_g.388A >C and IL1A/1_g.521T >A showed statistically significant differences between groups (adjusted OR (95% CI): 0.15 (0.03–0.76), P= 0.022; 5.76 (1.03–32.1), P= 0.046, respectively). It suggests that in the studied population the IL1A/1_g.388C allele is associated with a decreased PD risk, whereas the IL1A/1_g.521A allele can confer an increased risk. Additionally, the IL1A/2_g.515G >T variation resulted in a change of amino acid, i.e. glycine to valine. In silico analysis suggests that this change can alter protein structure and function, predicting it to be deleterious or damaging. This work suggests that IL1 genetic variants may be important in PD susceptibility in canines.  相似文献   
15.
Ooi CH  Oh HK  Wang HZ  Tan AL  Wu J  Lee M  Rha SY  Chung HC  Virshup DM  Tan P 《PLoS genetics》2011,7(12):e1002415
MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA-pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA-pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA-pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes ("hubs"), most nodes in the miRNA-pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA-pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available.  相似文献   
16.
MOTIVATION: It is a common practice in cancer microarray experiments that a normal tissue is collected from the same individual from whom the tumor tissue was taken. The indirect design is usually adopted for the experiment that uses a common reference RNA hybridized both to normal and tumor tissues. However, it is often the case that the test material is not large enough for the experimenter to extract enough RNA to conduct the microarray experiment. Hence, collecting n cases does not necessarily end up with a matched pair sample of size n. Instead we usually have a matched pair sample of size n1, and two independent samples of sizes n2 and n3, respectively, for 'reference versus normal tissue only' and 'reference versus tumor tissue only' hybridizations (n=n1 + n2 + n3). Standard statistical methods need to be modified and new statistical procedures are developed for analyzing this mixed dataset. RESULTS: We propose a new test statistic, t3, as a means of combining all the information in the mixed dataset for detecting differentially expressed (DE) genes between normal and tumor tissues. We employed the extended receiver operating characteristic approach to the mixed dataset. We devised a measure of disagreement between a RT-PCR experiment and a microarray experiment. Hotelling's T2 statistic is employed to detect a set of DE genes and its prediction rate is compared with the prediction rate of a univariate procedure. We observe that Hotelling's T2 statistic detects DE genes more efficiently than a univariate procedure and that further research is warranted on the formal test procedure using Hotelling's T2 statistic. CONTACT: bskim@yonsei.ac.kr.  相似文献   
17.
Allochromatium vinosum polyhydroxyalkanoate synthase catalyzes formation of poly-(R)-3-hydroxybutyrate (PHB) from (R)-3-hydroxybutyryl-coenzyme A (HB-CoA). (R)-3-Hydroxybutyryl-N-acetylcysteamine (HB-NAC) is an alternative substrate for this synthase in vitro, with a turnover 1% that of HB-CoA. With HB-NAC, the molecular weight (M(w)) of PHB produced at substrate-to-enzyme ratios of 1500-15 000 is approximately 75 kDa. (1)H NMR shows that PHB produced has hydroxybutyrate at the alcohol end and N-acetylcysteamine (NAC) at the carboxylate end of the polymer. Exogenous NAC has no effect on the M(w) of PHB produced with HB-CoA or HB-NAC in vitro, whereas PHB from a polymerization reaction with both HB-CoA and HB-NAC has intermediate M(w). These results can be accommodated by two models. In the first, NAC liberated at the active site during polymerization acts as a chain transfer agent. In the second, there is a noncovalent polymer intermediate covalently linked to NAC, which can dissociate from the active site.  相似文献   
18.
19.
20.
The bacterium Ralstonia eutropha H16 synthesizes polyhydroxybutyrate (PHB) from acetyl coenzyme A (acetyl-CoA) through reactions catalyzed by a β-ketothiolase (PhaA), an acetoacetyl-CoA reductase (PhaB), and a polyhydroxyalkanoate synthase (PhaC). An operon of three genes encoding these enzymatic steps was discovered in R. eutropha and has been well studied. Sequencing and analysis of the R. eutropha genome revealed putative isologs for each of the PHB biosynthetic genes, many of which had never been characterized. In addition to the previously identified phaB1 gene, the genome contains the isologs phaB2 and phaB3 as well as 15 other potential acetoacetyl-CoA reductases. We have investigated the roles of the three phaB isologs by deleting them from the genome individually and in combination. It was discovered that the gene products of both phaB1 and phaB3 contribute to PHB biosynthesis in fructose minimal medium but that in plant oil minimal medium and rich medium, phaB3 seems to be unexpressed. This raises interesting questions concerning the regulation of phaB3 expression. Deletion of the gene phaB2 did not result in an observable phenotype under the conditions tested, although this gene does encode an active reductase. Addition of the individual reductase genes to the genome of the ΔphaB1 ΔphaB2 ΔphaB3 strain restored PHB production, and in the course of our complementation experiments, we serendipitously created a PHB-hyperproducing mutant. Measurement of the PhaB and PhaA activities of the mutant strains indicated that the thiolase reaction is the limiting step in PHB biosynthesis in R. eutropha H16 during nitrogen-limited growth on fructose.Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by a wide range of bacteria as carbon and energy reserves. PHAs are typically stored when organisms are in an environment in which carbon is plentiful but the lack of another nutrient limits normal cell growth. It has been found that in environments with fluctuating carbon levels, PHA producers have crucial advantages over rival species (14). In addition to their importance in the microbial world, these polymers have been studied for their potential uses in biodegradable consumer goods (12) and medical products (22) and as chemical precursors (4). Although many PHA monomers have been discovered, the most common are 3-hydroxyalkanoates (32). Common PHAs are typically characterized by their constituent monomers as short-chain-length polymers (SCL-PHA; C4 and C5 monomers) or medium-chain-length polymers (MCL-PHA; C6 and longer monomers).The model organism used to study PHA biosynthesis is the Gram-negative bacterium Ralstonia eutropha. This organism accumulates a high percentage of its cell dry weight (CDW) as SCL-PHA under nutrient limitation. When grown on sugars or plant oils, R. eutropha makes poly(3-hydroxybutyrate) (PHB) almost exclusively, although the addition of precursors such as propionate to the growth medium can lead to incorporation of 3-hydroxyvalerate into the polymer chain as well (2). An operon of biosynthetic genes from R. eutropha encoding enzymes sufficient for synthesis of PHB from acetyl coenzyme A (acetyl-CoA), which consisted of phaC-phaA-phaB, was discovered in the late 1980s (25, 26, 36). In this pathway, two molecules of acetyl-CoA are condensed by a β-ketothiolase (PhaA) and the resulting acetoacetyl-CoA is reduced by a reductase (PhaB) to form (R)-3-hydroxybutyryl-CoA (HB-CoA), which is the substrate for the PHA synthase (PhaC). Sequencing and analysis of the R. eutropha genome revealed the existence of putative isologs for each of the PHA synthetic genes (29). While the existence of alternate β-ketothiolases was already known (39), most of the potential isologs identified had never been characterized.Our group wanted to better understand how acetoacetyl-CoA reduction occurs in R. eutropha. In addition to the earlier-identified phaB gene, now referred to as phaB1 (GeneID, 4249784), the genes phaB2 (GeneID, 4249785) and phaB3 (GeneID, 4250155) were discovered on R. eutropha chromosome 1. Fifteen other potential isologs were also found to encode amino acid sequences that could potentially indicate acetoacetyl-CoA reductase activity (29). The roles of the newly discovered genes in PHB biosynthesis were unclear, especially given the results of an earlier biochemical study that suggested there was a single NADPH-dependent acetoacetyl-CoA reductase in R. eutropha (10). In order to determine the roles of the reductase genes in R. eutropha, we deleted phaB1, phaB2, and phaB3 from the genome both individually and in combination. In addition to characterizing these newly discovered genes, we also hoped to eliminate or diminish formation of HB-CoA by stopping the reduction reaction. Efforts to purify the PHA synthase from R. eutropha have been complicated by the high levels of PHB made by this organism (7). Studying formation and growth of PHB granules is difficult because PHB accumulates at a high rate, causing individual granules to coalesce and become indistinct (44). We therefore believed that an R. eutropha strain with decreased HB-CoA synthesis would be a useful experimental tool and could also serve as a platform for engineering new PHA synthesis pathways into R. eutropha.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号