首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   23篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   9篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   11篇
  2013年   17篇
  2012年   22篇
  2011年   23篇
  2010年   17篇
  2009年   13篇
  2008年   16篇
  2007年   24篇
  2006年   13篇
  2005年   16篇
  2004年   16篇
  2003年   17篇
  2002年   13篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1977年   2篇
  1974年   2篇
排序方式: 共有309条查询结果,搜索用时 46 毫秒
271.
Scaling is a naturally iterative and bi‐directional component of problem solving in ecology and in climate science. Ecosystems and climate systems are unquestionably the sum of all their parts, to the smallest imaginable scale, in genomic processes or in the laws of fluid dynamics. However, in the process of scaling‐up, for practical purposes thewhole usually has to be construed as a good deal less than this. This essay demonstrates how controlled large‐scale experiments can be used to deduce key mechanisms and thereby reduce much of the detail needed for the process of scaling‐up. Collection of the relevant experimental evidence depends on controlling the environment and complexity of experiments, and on applications of technologies that report on, and integrate, small‐scale processes. As the role of biological feedbacks in the behavior of climate systems is better appreciated, so the need grows for experimentally based understanding of ecosystem processes. We argue that we cannot continue as we are doing, simply observing the progress of the greenhouse gas‐driven experiment in global change, and modeling its future outcomes. We have to change the way we think about climate system and ecosystem science, and in the process move to experimental modes at larger scales than previously thought achievable.  相似文献   
272.
Perturbation of the catalytic inorganic core (Mn4Ca1OxCly) of the photosystem II-water-oxidizing complex (PSII-WOC) isolated from spinach is examined by substitution of Ca2+ with cadmium(II) during core assembly. Cd2+ inhibits the yield of reconstitution of O2-evolution activity, called photoactivation, starting from the free inorganic cofactors and the cofactor-depleted apo-WOC-PSII complex. Ca2+ affinity increases following photooxidation of the first Mn2+ to Mn3+ bound to the 'high-affinity' site. Ca2+ binding occurs in the dark and is the slowest overall step of photoactivation (IM1-->IM1* step). Cd2+ competitively blocks the binding of Ca2+ to its functional site with 10- to 30-fold higher affinity, but does not influence the binding of Mn2+ to its high-affinity site. By contrast, even 10-fold higher concentrations of Cd2+ have no effect on O2-evolution activity in intact PSII-WOC. Paradoxically, Cd2+ both inhibits photoactivation yield, while accelerating the rate of photoassembly of active centres 10-fold relative to Ca2+. Cd2+ increases the kinetic stability of the photooxidized Mn3+ assembly intermediate(s) by twofold (mean lifetime for dark decay). The rate data provide evidence that Cd2+ binding following photooxidation of the first Mn3+, IM1-->IM1*, causes three outcomes: (i) a longer intermediate lifetime that slows IM1 decay to IM0 by charge recombination, (ii) 10-fold higher probability of attaining the degrees of freedom (either or both cofactor and protein d.f.) needed to bind and photooxidize the remaining 3 Mn2+ that form the functional cluster, and (iii) increased lability of Cd2+ following Mn4 cluster assembly results in (re)exchange of Cd2+ by Ca2+ which restores active O2-evolving centres. Prior EPR spectroscopic data provide evidence for an oxo-bridged assembly intermediate, Mn3+(mu-O2(-))Ca2+, for IM1*. We postulate an analogous inhibited intermediate with Cd2+ replacing Ca2+.  相似文献   
273.
The synthesis of potent 4-aryl methoxypiperidinol inhibitors of the dopamine transporter is described. Symmetrical para substituents of the benzene rings are important for high potency in binding to the dopamine transporter. 4-[Bis(4-fluorophenyl) methoxy]-1-methylpiperidine has an IC50 of 22.1+/-5.73 nM and increases locomotor activity in mice.  相似文献   
274.
275.
A hierarchical computational approach is used to identify the engineered binding-site cavity at the remodeled intermolecular interface between the mutants of human growth hormone (hGH) and the extracellular domain of its receptor (hGHbp). Multiple docking simulations are conducted with the remodeled hGH-hGHbp complex for a panel of potent benzimidazole-containing inhibitors that can restore the binding affinity of the wild-type complex, and for a set of known nonactive small molecules that contain different heterocyclic motifs. Structural clustering of ligand-bound conformations and binding free-energy calculations, using the AMBER force field and a continuum solvation model, can rapidly locate and screen numerous ligand-binding modes on the protein surface and detect the binding-site hot spot at the intermolecular interface. Structural orientation of the benzimidazole motif in the binding-site cavity closely mimics the position of the hot spot residue W104 in the crystal structure of the wild-type complex, which is recognized as an important structural requirement for restoring binding affinity. Despite numerous pockets on the protein surface of the mutant hGH-hGHbp complex, the binding-site cavity presents the energetically favorable hot spot for the benzimidazole-containing inhibitors, whereas for a set of nonactive molecules, the lowest energy ligand conformations do not necessarily bind in the engineered cavity. The results reveal a dominant role of the intermolecular van der Waals interactions in providing favorable ligand-protein energetics in the redesigned interface, in agreement with the experimental and computational alanine scanning of the hGH-hGHbp complex.  相似文献   
276.
Bi-directional signaling between ryanodine receptor type 1 (RyR1) and dihydropyridine receptor (DHPR) in skeletal muscle serves as a prominent example of conformational coupling. Evidence for a physiological mechanism that upon depolarization of myotubes tightly couples three calcium channels, DHPR, RyR1, and a Ca(2+) entry channel with SOCC-like properties, has recently been presented. This form of conformational coupling, termed excitation-coupled calcium entry (ECCE) is triggered by the alpha(1s)-DHPR voltage sensor and is highly dependent on RyR1 conformation. In this report, we substitute RyR1 cysteines 4958 or 4961 within the TXCFICG motif, common to all ER/SR Ca(2+) channels, with serine. When expressed in skeletal myotubes, C4958S- and C4961S-RyR1 properly target and restore L-type current via the DHPR. However, these mutants do not respond to RyR activators and do not support skeletal type EC coupling. Nonetheless, depolarization of cells expressing C4958S- or C4961S-RyR1 triggers calcium entry via ECCE that resembles that for wild-type RyR1, except for substantially slowed inactivation and deactivation kinetics. ECCE in these cells is completely independent of store depletion, displays a cation selectivity of Ca(2+)>Sr(2+) approximately Ba(2+), and is fully inhibited by SKF-96365 or 2-APB. Mutation of other non-CXXC motif cysteines within the RyR1 transmembrane assembly (C3635S, C4876S, and C4882S) did not replicate the phenotype observed with C4958S- and C4961S-RyR1. This study demonstrates the essential role of Cys(4958) and Cys(4961) within an invariant CXXC motif for stabilizing conformations of RyR1 that influence both its function as a release channel and its interaction with ECCE channels.  相似文献   
277.
X-ray structures permit theoretical study of Cl(-) permeation along bacterial ClC Cl(-) pores. We determined the lowest energy curvilinear pathway, identified anion-coordinating amino acids, and calculated the electrostatic potential energy profiles. We find that all four bacterial ClC Cl(-) crystal structures correspond to closed states. E148 and S107 side chains form steric barriers on both sides of the crystal binding site in the StClC wild-type and EcClC wild-type crystals; both the EcClC(E148A) and EcClC(E148Q) mutants are blocked at the S107 site. We studied the effect that mutating the charge of some strongly conserved pore-lining amino acids has on the electrostatic potential energy profiles. When E148 is neutralized, it creates an electrostatic trap, binding the ion near midmembrane. This suggests a possible electrostatic mechanism for controlling anion flow: neutralize E148, displace the side chain of E148 from the pore pathway to relieve the steric barrier, then trap the anion at midmembrane, and finally either deprotonate E148 and block the pore (pore closure) or bring a second Cl(-) into the pore to promote anion flow (pore conductance). Side-chain displacement may arise by competition for the binding site between the oxygens of E148 and the anion moving down the electrostatic energy gradient. We also find that the charge state of E111 and E113 may electrostatically control anion conductance and occupancy of the binding site within the cytoplasmic pore.  相似文献   
278.
The kinetic Monte Carlo reaction-path-following technique is applied to determine the lowest-energy water pathway and the coordinating amino acids in bAQP1 and GlpF channels, both treated as rigid. In bAQP1, water molecules pass through the pore between the asparagine-proline-alanine (NPA) and selectivity filter (SF) sites one at a time. The water chain is interrupted at the SF where one water forms three stable hydrogen bonds with protein atoms. In this SF, water's conformation depends on the protonation locus of H182. In GlpF, two water molecules bond simultaneously to the NPA asparagines and pass through the SF in zigzag fashion. No water single-file forms in rigid GlpF. To accommodate a single file of waters requires narrowing the GlpF pore. Our results reveal that in both proteins a proposed bipolar water arrangement is thermally disrupted in the NPA region, especially in the cytoplasmic part of the pore. The equilibrium hydrogen-bonded chain is occasionally interrupted in the hydrophobic zones adjacent to the NPA motifs. The permeation of alkali cations through bAQP1 and GlpF is barred due to a large free-energy barrier in the NPA region as well as a large energy barrier blocking entry from the cytoplasm. Permeation of halides is prevented due to two large energy barriers in the cytoplasmic and periplasmic pores as well as a large free-energy barrier barring entry from the periplasm. Our results, based on modeling charge permeation, support an electrostatic rather than orientational basis for proton exclusion. Binding within the aquaporin pore cannot compensate sufficiently for dehydration of the protonic charge; there is also an electrostatic barrier in the NPA region blocking proton transport. The highly ordered single file of waters, which is drastically interrupted at the SF of bAQP1, may also contribute to proton block.  相似文献   
279.
Influence of BCR/ABL fusion proteins on the course of Ph leukemias   总被引:1,自引:0,他引:1  
The hallmark of chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemia (ALL) is the presence of the Philadelphia chromosome as a result of the t(9;22) translocation. This gene rearrangement results in the production of a novel oncoprotein, BCR/ABL, a constitutively active tyrosine kinase. There is compelling evidence that the malignant transformation by BCR/ABL is critically dependent on its Abl tyrosine kinase activity. Also the bcr part of the hybrid gene takes part in realization of the malignant phenotype. We supposed that additional mutations accumulate in this region of the BCR/ABL oncogene during the development of the malignant blast crisis in CML patients. In ALL patients having p210 fusion protein the mutations were supposed to be preexisting. Sequencing of PCR product of the BCR/ABL gene (Dbl, PH region) showed that along with single-nucleotide substitutions other mutations, mostly deletions, had occurred. In an ALL patient a deletion of the 5th exon was detected. The size of the deletions varied from 36 to 220 amino acids. For one case of blast crisis of CML changes in the character of actin organization were observed. Taking into account the functional role of these domains in the cell an etiological role of such mutations on the disease phenotype and leukemia progression is plausible.  相似文献   
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号