首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2561篇
  免费   174篇
  国内免费   4篇
  2739篇
  2024年   10篇
  2023年   21篇
  2022年   85篇
  2021年   110篇
  2020年   116篇
  2019年   194篇
  2018年   162篇
  2017年   118篇
  2016年   136篇
  2015年   131篇
  2014年   181篇
  2013年   233篇
  2012年   223篇
  2011年   212篇
  2010年   125篇
  2009年   97篇
  2008年   91篇
  2007年   119篇
  2006年   90篇
  2005年   65篇
  2004年   54篇
  2003年   51篇
  2002年   42篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   8篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1977年   3篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1966年   2篇
排序方式: 共有2739条查询结果,搜索用时 8 毫秒
131.
132.
The purpose of this study was to evaluate the nature of film formation on tablets with different compositions, using confocal laser scanning microscopy (CLSM), and to measure film adhesion via the application of a novel “magnet probe test”. Three excipients, microcrystalline cellulose (MCC), spray-dried lactose monohydrate, and dibasic calcium phosphate dihydrate, were individually blended with 0.5% magnesium stearate, as a lubricant, and 2.5% tetracycline HCl, as a fluorescent marker, and were compressed using a Carver press. Tablets were coated with a solution consisting of 7% hydroxypropyl methylcellulose (HPMC) phthalate (HP-55), and 0.5% cetyl alcohl in acetone and isopropanol (11:9). The nature of polymer interaction with the tablets and coating was evaluated using CLSM and a designed magnet probe test. CLSM images clearly showed coating efficiency, thickness, and uniformity of film formation, and the extent of drug migration into the film at the coating interfaces of tablets. Among the excipients, MCC demonstrated the best interface for both film formation and uniformity in thickness relative to lactose monohydrate and dibasic calcium phosphate dihydrate. The detachment force of the coating layers from the tablet surfaces, as measured with the developed magnet probe test, was in the order of MCC>lactose monohydrate>dibasic calcium phosphate dihydrate. It was also shown that the designed magnet probe test provides reliable and reproducible results when used for measurement of film adhesion and bonding strength.  相似文献   
133.
134.
After the nearly complete and irreversible depletion of CD4(+) T lymphocytes induced by highly pathogenic simian/human immunodeficiency virus chimeric viruses (SHIVs) during infections of rhesus monkeys, tissue macrophages are able to sustain high levels (>10(6) viral RNA copies/ml) of plasma viremia for several months. We recently reported that the virus present in the plasma during the late macrophage phase of infection had acquired changes that specifically targeted the V2 region of gp120 (H. Imamichi et al., Proc. Natl. Acad. Sci. USA 99:13813-13818, 2002); some of these SHIV variants were macrophage-tropic (M-tropic). Those findings have been extended by examining the tropic properties, coreceptor usage, and gp120 structure of five independent SHIVs recovered directly from lymph nodes of late-stage animals. All of these tissue-derived SHIV isolates were able to infect alveolar macrophages. These M-tropic SHIVs used CXCR4, not CCR5, for infections of rhesus monkey PBMC and primary alveolar macrophages. Because the starting highly pathogenic T-tropic SHIV inoculum also utilized CXCR4, these results indicate that the acquisition of M-tropism in the SHIV-macaque system is not accompanied by a change in coreceptor usage. Compared to the initial T-tropic SHIV inoculum, tissue-derived M-tropic SHIVs from individual infected animals carry gp120s containing similar changes (specific amino acid deletions, substitutions, and loss of N-linked glycosylation sites), primarily within the V1 and/or V2 regions of gp120.  相似文献   
135.
136.
137.
We have used a two histidine-containing synthetic peptide (Sharp et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 10465-10470) as a scaffold to bind Zn(II) chlorin e6 (ZnCe6) through histidine ligation. Protocols for the preparation and purification of the peptide using an Escherichia coli expression system are presented. Size-exclusion chromatography and circular dichroism measurements indicate that the peptide self-assembles into a four-helix bundle protein. Two variants of the peptide lacking either one or both of the histidine residues were used to demonstrate the stoichiometry of ZnCe6 binding. Comparison of the titration profiles determined by UV-vis spectroscopy for the purified one- and two-histidine peptides suggests that the two-histidine peptide can bind two ZnCe6. The binding stoichiometry of ZnCe6 was verified by gel chromatography and native gel electrophoresis using the peptide variant lacking histidine residues as the control. Like many other chlorophyll analogue molecules, ZnCe6 can be photooxidized. The light-induced electron transfer between the ZnCe6-peptide complex and the added phenyl-p-benzoquinone was measured using time-resolved EPR spectroscopy and shown to be faster and have a higher yield than the electron transfer between unbound ZnCe6 and quinone. The implications of constructing a ZnCe6-peptide complex in terms of artificial photosynthesis are discussed.  相似文献   
138.
Vitamin A (retinoids) has an essential role in development and throughout life of humans and animals. Consequently, effects of the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on retinoid metabolism may be contributory to its toxicity. This study was performed to clarify the mechanism behind dioxin-induced retinyl ester formation in the rat kidney. In addition we investigated the possible role of CYP1A1 in dioxin-induced all-trans-retinoic acid (atRA) formation. Male Sprague-Dawley rats were exposed to a single oral dose of TCDD in a combined dose-response and time-course study, with doses ranging from 0.1 to 100 microg/kg bw and time points from 1 to 28 days. Levels of atRA and the expression of two potentially retinoic acid (RA)-controlled proteins critically involved in retinoid storage regulation, lecithin: retinol acyltransferase (LRAT) and cellular retinol binding protein I (CRBP I), were analyzed in liver and kidney. The expression and activity of cytochrome P4501A1 (assayed as ethoxyresorufin-O-deethylase activity) was assessed to gain insight into its potential role in RA synthesis. There was a significant increase in LRAT mRNA expression in the kidney, whereas no such increase could be observed in the liver, despite significantly increased atRA levels in both tissues. This suggests a tissue-specific regulation of LRAT by TCDD that may be dependent on other factors than atRA. Neither CRBP I mRNA nor protein levels were altered by TCDD. The time-course relationship between CYP1A1 activity and atRA levels in liver and kidney does not exclude a role of CYP1A1 in TCDD-induced RA synthesis. The observed altered regulation of the retinoid-metabolizing enzyme LRAT, together with the low doses and short time required by TCDD to change tissue RA levels, suggest that enzymes involved in retinoid metabolism are specific and/or direct targets of TCDD.  相似文献   
139.
The acyl carrier proteins (ACPs) of fatty acid synthase and polyketide synthase as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases are modified by 4'-phosphopantetheinyl transferases from inactive apo-enzymes to their active holo forms by transferring the 4'-phosphopantetheinyl moiety of coenzyme A to a conserved serine residue of the carrier protein. 4'-Phosphopantetheinyl transferases have been classified into two types; the AcpS type accepts ACPs of fatty acid synthase and some ACPs of type II polyketide synthase as substrates, whereas the Sfp type exhibits an extraordinarily broad substrate specificity. Based on the previously published co-crystal structure of Bacillus subtilis AcpS and ACP that provided detailed information about the interacting residues of the two proteins, we designed a novel hybrid PCP by replacing the Bacillus brevis TycC3-PCP helix 2 with the corresponding helix of B. subtilis ACP that contains the interacting residues. This was performed for the PCP domain as a single protein as well as for the TycA-PCP domain within the nonribosomal peptide synthetase module TycA from B. brevis. Both resulting proteins, designated hybrid PCP (hPCP) and hybrid TycA (hTycA), were modified in vivo during heterologous expression in Escherichia coli (hPCP, 51%; hTycA, 75%) and in vitro with AcpS as well as Sfp to 100%. The designated hTycA module contains two other domains: an adenylation domain (activating phenylalanine to Phe-AMP and afterward transferring the Phe to the PCP domain) and an epimerization domain (converting the PCP-bound l-Phe to d-Phe). We show here that the modified PCP domain of hTycA communicates with the adenylation domain and that the co-factor of holo-hPCP is loaded with Phe. However, communication between the hybrid PCP and the epimerization domain seems to be disabled. Nevertheless, hTycA is recognized by the next proline-activating elongation module TycB1 in vitro, and the dipeptide is formed and released as diketopiperazine.  相似文献   
140.
Until now, there has been no conclusive demonstration of any in vivo oleosin degradation at the early stages of oil body mobilization. The present work on sunflower (Helianthus annuus L.) has demonstrated limited oleosin degradation during seed germination. Seedling cotyledon homogenization in Tris-urea buffer, followed by SDS-PAGE, revealed three oleosins (16, 17.5 and 20 kDa). Incubation of oil bodies with total soluble protein from 4-day-old seedlings resulted in oleosin degradation. In vitro and in vivo degradation of the 17.5-kDa oleosin was faster than the other two, indicating its greater susceptibility to proteolysis. Oleosin degradation by the total soluble protein resulted in a transient 14.5-kDa polypeptide, followed by an 11-kDa protease-protected fragment, which appeared post-germinatively and accumulated corresponding to increased rate of lipid mobilization. A 65-kDa protease, active at pH 7.5-9.5, was zymographically detected in the total soluble protein. Its activity increased along with in vivo accumulation of the protease-protected fragment during seed germination and accompanying lipid mobilization. Protease-treated oil bodies were more susceptible to maize lipase action. Differential proteolytic sensitivity of different oleosins in the oil body membranes could be a determinant of oil body longevity during seed germination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号