首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2917篇
  免费   325篇
  3242篇
  2021年   41篇
  2020年   24篇
  2019年   23篇
  2017年   44篇
  2016年   54篇
  2015年   90篇
  2014年   97篇
  2013年   135篇
  2012年   142篇
  2011年   125篇
  2010年   87篇
  2009年   81篇
  2008年   107篇
  2007年   113篇
  2006年   116篇
  2005年   102篇
  2004年   98篇
  2003年   81篇
  2002年   70篇
  2001年   81篇
  2000年   100篇
  1999年   69篇
  1998年   46篇
  1997年   49篇
  1996年   43篇
  1995年   38篇
  1994年   29篇
  1993年   40篇
  1992年   63篇
  1991年   41篇
  1990年   50篇
  1989年   56篇
  1988年   49篇
  1987年   51篇
  1986年   40篇
  1985年   40篇
  1984年   43篇
  1983年   35篇
  1982年   46篇
  1981年   34篇
  1980年   31篇
  1979年   60篇
  1978年   49篇
  1977年   42篇
  1976年   29篇
  1975年   33篇
  1974年   29篇
  1973年   22篇
  1971年   21篇
  1968年   21篇
排序方式: 共有3242条查询结果,搜索用时 15 毫秒
81.
Projected changes in climate are expected to have widespread effects on plant community composition and diversity in coming decades. However, multisite, multifactor climate manipulation studies that have examined whether observed responses are regionally consistent and whether multiple climate perturbations are interdependent are rare. Using such an experiment, we quantified how warming and increased precipitation intensity affect the relative dominance of plant functional groups and diversity across a broad climate gradient of Mediterranean prairies. We implemented a fully factorial climate manipulation of warming (+2.5–3.0 °C) and increased wet‐season precipitation (+20%) at three sites across a 520‐km latitudinal gradient in the Pacific Northwest, USA. After seeding with a nearly identical mix of native species at all sites, we measured plant community composition (i.e., cover, richness, and diversity), temperature, and soil moisture for 3 years. Warming and the resultant drying of soils altered plant community composition, decreased native diversity, and increased total cover, with warmed northern communities becoming more similar to communities further south. In particular, after two full years of warming, annual cover increased and forb cover decreased at all sites mirroring the natural biogeographic pattern. This suggests that the extant climate gradient of increasing heat and drought severity is responsible for a large part of the observed biogeographic pattern of increasing annual invasion in US West Coast prairies as one moves further south. Additional precipitation during the rainy season did little to relieve drought stress and had minimal effects on plant community composition. Our results suggest that the projected increase in drought severity (i.e., hotter, drier summers) in Pacific Northwest prairies may lead to increased invasion by annuals and a loss of forbs, similar to what has been observed in central and southern California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem functions.  相似文献   
82.
Protein kinase C (PKC) activation, enhanced by hyperglycemia, is associated with many tissue abnormalities observed in diabetes. Akt is a serine/threonine kinase that mediates various biological responses induced by insulin. We hypothesized that the negative regulation of Akt in the vasculature by PKC could contribute to insulin resistant states and, may therefore play a role in the pathogenesis of cardiovascular disease. In this study, we specifically looked at the ability of PKC to inhibit Akt activation induced by insulin in cultured rat aortic vascular smooth muscle cells (VSMCs). Activation of Akt was determined by immunoblotting with a phospho-Akt antibody that selectively recognizes Ser473 phosphorylated Akt. A PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited insulin-dependent Akt phosphorylation. However, PMA did not inhibit platelet-derived growth factor (PDGF)-induced activation of Akt. We further showed that the PKC inhibitor, G06983, blocked the PMA-induced inhibition of Akt phosphorylation by insulin. In addition, we demonstrated that PMA inhibited the insulin-induced tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). From these data, we conclude that PKC is a potent negative regulator of the insulin signal in the vasculature, which indicate an important role of PKC in the development of insulin resistance in cardiovascular disease.  相似文献   
83.
Intracellular reduction of carcinogenic Cr(VI) leads to the extensive formation of Cr(III)-DNA phosphate adducts. Repair mechanisms for chromium and other DNA phosphate-based adducts are currently unknown in human cells. We found that nucleotide excision repair (NER)-proficient human cells rapidly removed chromium-DNA adducts, with an average t((1/2)) of 7.1 h, whereas NER-deficient XP-A, XP-C, and XP-F cells were severely compromised in their ability to repair chromium-DNA lesions. Activation of NER in Cr(VI)-treated human fibroblasts or lung epithelial H460 cells was manifested by XPC-dependent binding of the XPA protein to the nuclear matrix, which was also observed in UV light-treated (but not oxidant-stressed) cells. Intracellular replication of chromium-modified plasmids demonstrated increased mutagenicity of binary Cr(III)-DNA and ternary cysteine-Cr(III)-DNA adducts in cells with inactive NER. NER deficiency created by the loss of XPA in fibroblasts or by knockdown of this protein by stable expression of small interfering RNA in H460 cells increased apoptosis and clonogenic death by Cr(VI), providing genetic evidence for the role of monofunctional chromium-DNA adducts in the toxic effects of this metal. The rate of NER of chromium-DNA adducts under saturating conditions was calculated to be approximately 50,000 lesions/min/cell. Because chromium-DNA adducts cause only small changes in the DNA helix, rapid repair of these modifications in human cells indicates that the presence of major structural distortions in DNA is not required for the efficient detection of the damaged sites by NER proteins in vivo.  相似文献   
84.
Receptors for advanced glycation end-products (RAGE) are multiligand cell surface receptors of the immunoglobin family expressed by epithelium and macrophages, and expression increases following exposure to cigarette smoke extract (CSE). The present study sought to characterize the proinflammatory contributions of RAGE expressed by alveolar macrophages (AMs) following CSE exposure. Acute exposure of mice to CSE via nasal instillation revealed diminished bronchoalveolar lavage (BAL) cellularity and fewer AMs in RAGE knockout (KO) mice compared with controls. Primary AMs were obtained from BAL, exposed to CSE in vitro, and analyzed. CSE significantly increased RAGE expression by wild-type AMs. Employing ELISAs, wild-type AMs exposed to CSE had increased levels of active Ras, a small GTPase that perpetuates proinflammatory signaling. Conversely, RAGE KO AMs had less Ras activation compared with wild-type AMs after exposure to CSE. In RAGE KO AMs, assessment of p38 MAPK and NF-κB, important intracellular signaling intermediates induced during an inflammatory response, revealed that CSE-induced inflammation may occur in part via RAGE signaling. Lastly, quantitative RT-PCR revealed that the expression of proinflammatory cytokines including TNF-α and IL-1β were detectably decreased in RAGE KO AMs exposed to CSE compared with CSE-exposed wild-type AMs. These results reveal that primary AMs orchestrate CSE-induced inflammation, at least in part, via RAGE-mediated mechanisms.  相似文献   
85.
Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system.  相似文献   
86.
The effect of feeding supplemental biotin on net absorption and metabolism of nutrients by the portal-drained viscera (PDV; the gut, pancreas, spleen and associated fat) and liver of lactating dairy cows was measured. Three cows in early to mid-lactation catheterised for measurements of net nutrient absorption and metabolism by the PDV and liver were fed a total-mixed ration with or without supplemental biotin at 20 mg/day using a switch-back design (ABA v. BAB) with three 2-week periods. There were no effects of feeding biotin on dry matter intake (22.2 kg/day), milk yield (29.5 kg/day) or milk composition. There was also no effect of feeding biotin on net release of glucose by the liver, net liver removal of glucose precursors (propionate, alanine, lactate) or net liver release of β-hydroxybutyrate. Feeding biotin increased net PDV release of ammonia. Reasons for the response are not certain, but a numerical increase in net PDV release of acetate suggests that rumen or hindgut fermentation was altered. Results of the present study do not support the hypothesis that supplemental biotin increases liver glucose production in lactating dairy cows.  相似文献   
87.
Phytoremediation can be effective for remediating contaminated soils in situ and generally requires the addition of nitrogen (N) to increase plant growth. Our research objectives were to evaluate seedling emergence and survival of plant species and to determine the effects of N additions on plant growth in crude-oil-contaminated soil. From a preliminary survival study, three warm-season grasses--pearlmillet (Pennisetum glaucum [L.] R. Br.), sudangrass (Sorghum sudanense [Piper] Stapf [Piper]), and browntop millet (Brachiaria ramosa L.)--and one warm-season legume--jointvetch (Aeschynomene americana L.)--were chosen to determine the influence of the N application rate on plant growth in soil contaminated with weathered crude oil. Nitrogen was added based on total petroleum hydrocarbon-C:added N ratios (TPH-C:TN) ranging from 44:1 to 11:1. Plant species were grown for 7 wk. Root and shoot biomass were determined and root length and surface area were analyzed. Pearlmillet and sudangrass had higher shoot and root biomass when grown at a TPH-C:TN (inorganic) ratio of 11:1 and pearlmillet had higher root length and surface area when grown at 11:1 compared with the other species. By selecting appropriate plant species and determining optimum N application rates, increased plant root growth and an extended rhizosphere influence should lead to enhanced phytoremediation of crude-oil-contaminated soil.  相似文献   
88.
Cullin 4 (Cul4), a member of the evolutionally conserved cullin protein family, serves as a scaffold to assemble multisubunit ubiquitin E3 ligase complexes. Cul4 interacts with the Ring finger-containing protein ROC1 through its C-terminal cullin domain and with substrate recruiting subunit(s) through its N-terminus. Previous studies have demonstrated that Cul4 E3 ligase ubiquitylates key regulators in cell cycle control and mediates their degradation through the proteasomal pathway, thus contributing to genome stability. Recent studies from several groups have revealed that Cul4 E3 ligase can target histones for ubiquitylation, and importantly, ubiquitylation of histones may facilitate the cellular response to DNA damage. Therefore, histone ubiquitylation by Cul4 E3 ligase constitutes a novel mechanism through which Cul4 regulates chromatin function and maintains genomic integrity. We outline these studies and suggest that histone ubiquitylation might play important roles in Cul4-regualted chromatin function including the cellular response to DNA damage and heterochromatin gene silencing.  相似文献   
89.
Carcinogenic chromates induce DNA single-strand breaks (SSB) that are detectable by conventional alkali-based assays. However, the extent of direct breakage has been uncertain because excision repair and hydrolysis of Cr-DNA adducts at alkaline pH also generate SSB. We examined mechanisms of SSB production during chromate reduction by glutathione (GSH) and assessed the significance of these lesions in cells using genetic approaches. Cr(VI) reduction was biphasic and the formation of SSB occurred exclusively during the slow reaction phase. Catalase or iron chelators completely blocked DNA breakage, as did the use of GSH purified by a modified Chelex procedure. Thus, the direct intermediates of GSH-chromate reactions were unable to cause SSB unless activated by H2O2. SSB repair-deficient XRCC1(-/-) and proficient XRCC1+ EM9 cells had identical survival at doses causing up to 60% clonogenic death and accumulation of 1 mM Cr(VI). However, XRCC1(-/-) cells displayed higher lethality in the more toxic range and the depletion of GSH made them hypersensitive even to moderate doses. Elevation of cellular catalase or GSH levels eliminated survival differences between XRCC1(-/-) and XRCC1+ cells. In summary, formation of toxic SSB in cells occurs at relatively high chromate doses, requires H2O2, and is suppressed by high GSH concentrations.  相似文献   
90.
Goldfish (Carassius auratus) and bluegill sunfish (Lepomis macrochirus) were placed in aquaria where their locomotor activity was monitored by photocells, and tested at various acclimation temperatures over a range encompassing their final thermal preferenda. Activity was pooled over 24-hour periods to eliminate any circadian rhythm effects. Both species exhibited an activity well of reduced locomotor activity in the region of the final preferendum. Goldfish, tested either singly or in groups of 2–5 individuals, exhibited a social-interaction effect which became more pronounced at higher temperatures. These results are discussed in relation to a thermokinetic interpretation of thermo-regulatory behavior in fishes, and to the correspondence between thermal preferenda and thermal optima.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号