首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2840篇
  免费   316篇
  国内免费   1篇
  3157篇
  2022年   23篇
  2021年   43篇
  2020年   25篇
  2019年   24篇
  2018年   27篇
  2017年   41篇
  2016年   52篇
  2015年   85篇
  2014年   87篇
  2013年   124篇
  2012年   136篇
  2011年   123篇
  2010年   86篇
  2009年   77篇
  2008年   104篇
  2007年   110篇
  2006年   108篇
  2005年   95篇
  2004年   95篇
  2003年   80篇
  2002年   68篇
  2001年   73篇
  2000年   91篇
  1999年   68篇
  1998年   41篇
  1997年   47篇
  1996年   42篇
  1995年   37篇
  1994年   30篇
  1993年   41篇
  1992年   64篇
  1991年   41篇
  1990年   50篇
  1989年   56篇
  1988年   49篇
  1987年   51篇
  1986年   41篇
  1985年   40篇
  1984年   41篇
  1983年   37篇
  1982年   47篇
  1981年   33篇
  1980年   31篇
  1979年   59篇
  1978年   49篇
  1977年   43篇
  1976年   27篇
  1975年   33篇
  1974年   29篇
  1973年   22篇
排序方式: 共有3157条查询结果,搜索用时 15 毫秒
101.
Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system.  相似文献   
102.
Modulators of cadherin function are of great interest given that the cadherin complex actively contributes to the morphogenesis of virtually all tissues. The catenin p120(ctn) (formerly p120cas) was first identified as a src- and receptor-protein tyrosine kinase substrate and later shown to interact directly with cadherins. In common with beta-catenin and plakoglobin (gamma-catenin), p120(ctn) contains a central Armadillo repeat region by which it binds cadherin cytoplasmic domains. However, little is known about the function of p120(ctn) within the cadherin complex. We examined the role of p120(ctn)1A in early vertebrate development via its exogenous expression in Xenopus. Ventral overexpression of p120(ctn)1A, in contrast to beta-catenin, did not induce the formation of duplicate axial structures resulting from the activation of the Wnt signaling pathway, nor did p120(ctn) affect mesoderm induction. Rather, dorsal misexpression of p120(ctn) specifically perturbed gastrulation. Lineage tracing of cells expressing exogenous p120(ctn) indicated that cell movements were disrupted, while in vitro studies suggested that this may have been a consequence of reduced adhesion between blastomeres. Thus, while cadherin-binding proteins beta-catenin, plakoglobin, and p120(ctn) are members of the Armadillo protein family, it is clear that these proteins have distinct biological functions in early vertebrate development. This work indicates that p120(ctn) has a role in cadherin function and that heightened expression of p120(ctn) interferes with appropriate cell-cell interactions necessary for morphogenesis.  相似文献   
103.
Desmosomal cadherins are essential cell adhesion molecules present throughout the epidermis and other organs, whose major function is to provide mechanical integrity and stability to epithelial cells in a wide variety of tissues. We recently identified a novel desmoglein family member, Desmoglein 4 (Dsg4), using a positional cloning approach in two families with localized autosomal recessive hypotrichosis (LAH) and in the lanceolate hair (lah) mouse. In this study, we report cloning and identification of the rat Dsg4 gene, in which we discovered a missense mutation in a naturally occurring lanceolate hair (lah) rat mutant. Phenotypic analysis of lah/lah mutant rats revealed a striking hair shaft defect with the appearance of a lance head within defective hair shafts. The mutation disrupts a critical calcium binding site bridging the second and third extracellular domains of Dsg4, likely disrupting extracellular interactions of the protein.  相似文献   
104.
IL-7 delivers survival signals to cells at an early stage in lymphoid development. In the absence of IL-7, pro-T cells undergo programmed cell death, which has previously been associated with a decline in Bcl-2 and translocation of Bax from cytosol to mitochondria. A new, earlier feature of IL-7 withdrawal was identified using an IL-7-dependent thymocyte line. We observed that withdrawal of IL-7 induced increased expression of jun and fos family member genes including c-jun, junB, junD, c-fos and fra2. This transient response peaked 3-4 h after IL-7 was withdrawn and resulted in increased DNA-binding activity of AP-1 and in a change in the composition of the Jun/Fos family dimers shown by electrophoretic mobility shift and supershift assays. Induction of jun and fos genes and the increased DNA-binding activity of AP-1 were attributable to the phosphorylation-induced activation of the stress kinases p38 and JNK and were blocked by the chemical kinase inhibitors SB203580 and SB202190. The stress response contributed to cell death following IL-7 withdrawal as shown by blocking the activity of the stress (MAP) kinases or by blocking the production of c-Jun and c-Fos using antisense oligonucleotides.  相似文献   
105.
Clara cells were first described as a morphologically distinct cell type by Kolliker in 1881, but they take their name from the seminal study of human and rabbit bronchioles by Max Clara in 1937. Since their discovery, Clara cells have been identified as central players in protecting the airway from environmental exposures. The diverse functions of Clara cells in lung homeostasis include roles in xenobiotic metabolism, immune system regulation, and progenitor cell activity. Recent identification of a sub-population of Clara cells as a bronchiolar tissue-specific stem cell and a potential tumor initiating cell has focused the attention of cell and molecular biologists on the Clara cell and its behavior under normal and disease conditions.  相似文献   
106.
We use neural field theory and spike-timing dependent plasticity to make a simple but biophysically reasonable model of long-term plasticity changes in the cortex due to transcranial magnetic stimulation (TMS). We show how common TMS protocols can be captured and studied within existing neural field theory. Specifically, we look at repetitive TMS protocols such as theta burst stimulation and paired-pulse protocols. Continuous repetitive protocols result mostly in depression, but intermittent repetitive protocols in potentiation. A paired pulse protocol results in depression at short ( < ~ 10 ms) and long ( > ~ 100 ms) interstimulus intervals, but potentiation for mid-range intervals. The model is sensitive to the choice of neural populations that are driven by the TMS pulses, and to the parameters that describe plasticity, which may aid interpretation of the high variability in existing experimental results. Driving excitatory populations results in greater plasticity changes than driving inhibitory populations. Modelling also shows the merit in optimizing a TMS protocol based on an individual’s electroencephalogram. Moreover, the model can be used to make predictions about protocols that may lead to improvements in repetitive TMS outcomes.  相似文献   
107.
The decisions animals make about how long to wait between activities can determine the success of diverse behaviours such as foraging, group formation or risk avoidance. Remarkably, for diverse animal species, including humans, spontaneous patterns of waiting times show random ‘burstiness’ that appears scale-invariant across a broad set of scales. However, a general theory linking this phenomenon across the animal kingdom currently lacks an ecological basis. Here, we demonstrate from tracking the activities of 15 sympatric predator species (cephalopods, sharks, skates and teleosts) under natural and controlled conditions that bursty waiting times are an intrinsic spontaneous behaviour well approximated by heavy-tailed (power-law) models over data ranges up to four orders of magnitude. Scaling exponents quantifying ratios of frequent short to rare very long waits are species-specific, being determined by traits such as foraging mode (active versus ambush predation), body size and prey preference. A stochastic–deterministic decision model reproduced the empirical waiting time scaling and species-specific exponents, indicating that apparently complex scaling can emerge from simple decisions. Results indicate temporal power-law scaling is a behavioural ‘rule of thumb’ that is tuned to species’ ecological traits, implying a common pattern may have naturally evolved that optimizes move–wait decisions in less predictable natural environments.  相似文献   
108.
Background: Hepatoblastoma is a malignant embryonal tumor typically diagnosed in children younger than five years of age. Little is known on hepatoblastoma etiology. Methods: We matched California Cancer Registry records of hepatoblastomas diagnosed in children younger than age 6 from 1988 to 2007 to birth records using a probabilistic record linkage program, yielding 261 cases. Controls (n = 218,277), frequency matched by birth year to all cancer cases in California for the same time period, were randomly selected from California birth records. We examined demographic and socioeconomic information, birth characteristics, pregnancy history, complications in pregnancy, labor and delivery, and abnormal conditions and clinical procedures relating to the newborn, with study data taken from birth certificates. Results: We observed increased risks for hepatoblastoma among children with low [1500–2499 g, Odds Ratio (OR) = 2.02, 95% confidence interval (CI) 1.29–3.15] and very low birthweight (<1500 g, OR = 15.4, 95% CI 10.7–22.3), preterm birth <33 weeks (OR = 7.27, 95% CI 5.00, 10.6), small size for gestational age (OR = 1.75, 95% CI 1.25–2.45), and with multiple birth pregnancies (OR = 2.52, 95% CI 1.54–4.14). We observed a number of pregnancy and labor complications to be related to hepatoblastoma, including preeclampsia, premature labor, fetal distress, and congenital anomalies. Conclusion: These findings confirm previously reported associations with low birthweight and preeclampsia. The relation with multiple birth pregnancies has been previously reported and may indicate a relation to infertility treatments.  相似文献   
109.
We have investigated the effects of insulin, amino acids, and the degree of muscle loading on the phosphorylation of Ser(2448), a site in the mammalian target of rapamycin (mTOR) phosphorylated by protein kinase B (PKB) in vitro. Phosphorylation was assessed by immunoblotting with a phosphospecific antibody (anti-Ser(P)(2448)) and with mTAb1, an activating antibody whose binding is inhibited by phosphorylation in the region of mTOR that contains Ser(2448). Incubating rat diaphragm muscles with insulin increased Ser(2448) phosphorylation but did not change the total amount of mTOR. Insulin, but not amino acids, activated PKB, as evidenced by increased phosphorylation of both Ser(308) and Thr(473) in the kinase. Ser(2448) phosphorylation was also modulated by muscle-loading. Overloading the rat plantaris muscle by synergist muscle ablation, which promotes hypertrophy of the plantaris muscle, increased Ser(2448) phosphorylation. In contrast, unloading the gastrocnemius muscle by hindlimb suspension, which promotes atrophy of the muscle, decreased Ser(2448) phosphorylation, an effect that was fully reversible. Neither overloading nor hindlimb suspension significantly changed the total amount of mTOR. In summary, our results demonstrate that atrophy and hypertrophy of skeletal muscle are associated with decreases and increases in Ser(2448) phosphorylation, suggesting that modulation of this site may have an important role in the control of protein synthesis.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号