首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   22篇
  国内免费   1篇
  228篇
  2024年   3篇
  2023年   4篇
  2022年   11篇
  2021年   12篇
  2020年   16篇
  2019年   27篇
  2018年   22篇
  2017年   11篇
  2016年   14篇
  2015年   7篇
  2014年   16篇
  2013年   23篇
  2012年   14篇
  2011年   12篇
  2010年   9篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2002年   2篇
  1999年   1篇
  1986年   1篇
  1977年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
211.
Mechanical properties of the cell are important biomarkers for probing its architectural changes caused by cellular processes and/or pathologies. The development of microfluidic technologies has enabled measuring the cell’s mechanical properties at high throughput so that mechanical phenotyping can be applied to large samples in reasonable timescales. These studies typically measure the stiffness of the cell as the only mechanical biomarker and do not disentangle the rheological contributions of different structural components of the cell, including the cell cortex, the interior cytoplasm and its immersed cytoskeletal structures, and the nucleus. Recent advancements in high-speed fluorescent imaging have enabled probing the deformations of the cell cortex while also tracking different intracellular components in rates applicable to microfluidic platforms. We present a, to our knowledge, novel method to decouple the mechanics of the cell cortex and the cytoplasm by analyzing the correlation between the cortical deformations that are induced by external microfluidic flows and the nucleus displacements, induced by those cortical deformations, i.e., we use the nucleus as a high-throughput microrheological probe to study the rheology of the cytoplasm, independent of the cell cortex mechanics. To demonstrate the applicability of this method, we consider a proof-of-concept model consisting of a rigid spherical nucleus centered in a spherical cell. We obtain analytical expressions for the time-dependent nucleus velocity as a function of the cell deformations when the interior cytoplasm is modeled as a viscous, viscoelastic, porous, and poroelastic material and demonstrate how the nucleus velocity can be used to characterize the linear rheology of the cytoplasm over a wide range of forces and timescales/frequencies.  相似文献   
212.
Molecular Biology Reports - Adipokines play an important role in the development of type 2 diabetes mellitus (T2DM) and its complications like nephropathy. Asprosin is a newly discovered adipokine...  相似文献   
213.

Introduction

CD4+CD25+/highCD127low/- regulatory T cells (Tregs) play a crucial role in maintaining peripheral tolerance. Data about the frequency of Tregs in rheumatoid arthritis (RA) are contradictory and based on the analysis of peripheral blood (PB) and synovial fluid (SF). Because Tregs exert their anti-inflammatory activity in a contact-dependent manner, the analysis of synovial membrane (SM) is crucial. Published reports regarding this matter are lacking, so we investigated the distribution and phenotype of Tregs in concurrent samples of SM, SF and PB of RA patients in comparison to those of osteoarthritis (OA) patients.

Methods

Treg frequency in a total of 40 patients (18 RA and 22 OA) matched for age and sex was assessed by flow cytometry. Functional status was assessed by analysis of cell surface markers representative of activation, memory and regulation.

Results

CD4+ T cells infiltrate the SM to higher frequencies in RA joints than in OA joints (P = 0.0336). In both groups, Tregs accumulate more within the SF and SM than concurrently in PB (P < 0.0001). Relative Treg frequencies were comparable in all compartments of RA and OA, but Treg concentration was significantly higher in the SM of RA patients (P = 0.025). Both PB and SM Tregs displayed a memory phenotype (CD45RO+RA-), but significantly differed in activation status (CD69 and CD62L) and markers associated with Treg function (CD152, CD154, CD274, CD279 and GITR) with only minor differences between RA and OA.

Conclusions

Treg enrichment into the joint compartment is not specific to inflammatory arthritis, as we found that it was similarly enriched in OA. RA pathophysiology might not be due to a Treg deficiency, because Treg concentration in SM was significantly higher in RA. Synovial Tregs represent a distinct phenotype and are activated effector memory cells (CD62L-CD69+), whereas peripheral Tregs are resting central memory cells (CD62L+CD69-).  相似文献   
214.
The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss® and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss®-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.  相似文献   
215.
216.
Molecular Biology Reports - Hepatic steatosis is an early form of non-alcoholic fatty liver disease (NAFLD), caused by abnormal fat deposition in the hepatocytes. Conjugated linoleic acid (CLA) is...  相似文献   
217.
Microglial cells have an essential role in neurodegenerative disorders, such as multiple sclerosis. They are divided into two subgroups: M1 and M2 phenotypes. Mesenchymal stem cells (MSC), with neuroprotective and immunomodulating properties, could improve these diseases. We evaluate the immunomodulating effects of MSC on microglial phenotypes and the improvement of demyelination in a cuprizone (CPZ) model of multiple sclerosis (MS). For inducing the chronic demyelination model, C57BL6 mice were given a diet with 0.2% CPZ (w/w) for 12 weeks. In the MSC group, cells were transplanted into the right lateral ventricle of mice. The expression of targeted genes was assessed by real-time polymerase chain reaction. M1 and M2 microglial phenotypes were assessed by immunohistochemistry of inducible nitric oxide synthase (iNOS) and Arg-1, respectively. Remyelination was studied by luxal fast blue (LFB) staining and electron microscopy (EM). We found that MSC transplantation reduced the expression level of M1-specific messenger RNA (mRNA; iNOS and CD86) but increased the expression level of M2 specific genes (CD206, Arg-1, and CX3CR1) in comparison to the CPZ group. Moreover, cell therapy significantly decreased the M1 marker (iNOS+ cells), but M2 marker (Arg-1+ cells) significantly increased in comparison with the CPZ group. In addition, MSC treatment significantly increased the CX3CL1 expression level in comparison with the CPZ group and led to improvement in remyelination, which was confirmed by LFB and EM images. The results showed that MSC transplantation increases the M2 and decreases the M1 phenotype in MS. This change was accompanied by decrease in demyelination and axonal injury and indicated that MSCs have a positive effect on MS by modification of microglia cells.  相似文献   
218.
Cell transplantation has become a possible therapeutic approach in the treatment of neurodegenerative diseases of the nervous system by replacing lost cells. The current study aimed to make a comparison between the differentiation capacity of the olfactory bulb neural stem cells (OB-NSCs) and olfactory ectomesenchymal stem cells (OE-MSCs) into dopaminergic-like neurons under the inductive effect of transforming growth factor β (TGF-β). After culturing and treating with TGF-β, the differentiation capacities of both types of stem cells into dopaminergic neuron-like cells were evaluated. Quantitative real-time polymerase chain reaction analysis 3 weeks after induction demonstrated that the mRNA expression of the dopaminergic activity markers tyrosine hydroxylase (TH), dopamine transporter (DAT), paired box gene 2 (PAX2), and PAX5 in the neuron-like cells derived from OB-NSCs was significantly higher than those derived from OE-MSCs. These findings were further supported by the immunocytochemistry staining showing that the expression of the tyrosine hydroxylase, DAT, PAX2, and paired like homeodomain 3 seemed to be slightly higher in OB-NSCs compared with OE-MSCs. Despite the lower differentiation capacity of OE-MSCs, other considerations such as a noninvasive and easier harvesting process, faster proliferation attributes, longer life span, autologous transplantability, and also the easier and inexpensive cultural process of the OE-MSCs, cumulatively make these cells the more appropriate alternative in the case of autologous transplantation during the treatment process of neurodegenerative disorders like Parkinson's disease.  相似文献   
219.
According to the “parent-offspring conflict hypothesis” the rapid evolution and diversification of the mammalian placenta is driven by divergent optima of resource allocation between fetus and mother. The fetus has an interest to maximize its resource intake, while the mother has an interest to restrict the transfer of resources, and thus retain resources for subsequent pregnancies. In the epitheliochorial placenta, the contacting fetal and maternal surfaces at the feto-maternal interface are covered with microvilli, which leads to an increase of membrane surfaces available for transport processes. Because membranes are the site of active transport, the conflict hypothesis predicts that the fetal surfaces at the feto-maternal interfaces are larger than the maternal ones. We use transmission electron microscopy and a stereological method to estimate the factors by which the apical fetal and maternal membranes are enlarged by the microvilli. Ten species with an epitheliochorial placenta were studied. Focused ion beam—scanning electron microscopy (FIB-SEM) was used to create three-dimensional models of the interdigitating microvilli of the bovine and porcine placenta. In all species, the fetal surface was larger than the maternal. This was due to a higher number of fetal microvilli and to the presence of membrane folds at the base of the fetal, but not of maternal microvilli. Our results suggest that the ultrastructural morphology of the feto-maternal interface in the epitheliochorial placenta is shaped by conflicting interests between fetus and mother and thus represent a so far neglected arena of the parent-offspring conflict.  相似文献   
220.
International Journal of Peptide Research and Therapeutics - The vascular endothelial growth factor (VEGF) signaling pathway has a crucial role in regulating tumor angiogenesis. VEGF-A shows...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号