首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1416篇
  免费   195篇
  2022年   14篇
  2021年   29篇
  2020年   17篇
  2019年   36篇
  2018年   43篇
  2017年   34篇
  2016年   48篇
  2015年   67篇
  2014年   68篇
  2013年   75篇
  2012年   89篇
  2011年   78篇
  2010年   78篇
  2009年   54篇
  2008年   70篇
  2007年   81篇
  2006年   69篇
  2005年   59篇
  2004年   58篇
  2003年   40篇
  2002年   49篇
  2001年   27篇
  2000年   44篇
  1999年   29篇
  1998年   23篇
  1997年   9篇
  1996年   18篇
  1995年   10篇
  1994年   15篇
  1993年   12篇
  1992年   19篇
  1991年   22篇
  1990年   21篇
  1989年   17篇
  1988年   13篇
  1987年   9篇
  1986年   14篇
  1985年   15篇
  1984年   12篇
  1983年   8篇
  1982年   7篇
  1980年   9篇
  1977年   13篇
  1976年   8篇
  1975年   6篇
  1973年   8篇
  1972年   9篇
  1971年   5篇
  1969年   9篇
  1967年   7篇
排序方式: 共有1611条查询结果,搜索用时 15 毫秒
71.
The lethal yellowing (LY) disease and LY‐type syndromes affecting several palm species are associated with 16SrIV phytoplasmas in the Americas. In Mexico, palms of the species Roystonea regia and the native Acrocomia mexicana were found to exhibit LY‐type symptoms, including leaf decay, starting with mature leaves, necrosis and atrophy of inflorescences. DNA extracts obtained from these palms could be amplified by nested‐PCR using phytoplasma‐universal primer pair P1/P7 followed by LY‐group‐specific primer pair LY16Sr/LY16Sf. Blast analysis of the sequences obtained revealed an identity of 100% for R. regia and 99.27% for A. mexicana with 16SrIV‐A strain associated with LY in Florida, USA (Acc. AF498309 ). Computer‐simulated RFLP analysis showed that the patterns for the phytoplasma DNA of the two palm species were highly similar to that for 16SrIV subgroup A strain. A neighbour‐joining tree was constructed, and the sequences of the two palm species clustered in the same clade of group 16SrIV subgroup A. The results therefore support that LY‐type syndromes observed in palms of R. regia and A. mexicana in the Yucatan region of Mexico are associated with 16SrIV subgroup A phytoplasmas.  相似文献   
72.
Ibogaine and other ibogan type alkaloids present anti‐addictive effects against several drugs of abuse and occur in different species of the Apocynaceae family. In this work, we used gas chromatography‐mass spectrometry (GC/MS) and principal component analysis (PCA) in order to compare the alkaloid profiles of the root and stem barks of four Mexican Tabernaemontana species with the root bark of the entheogenic African shrub Tabernanthe iboga. PCA demonstrated that separation between species could be attributed to quantitative differences of the major alkaloids, coronaridine, ibogamine, voacangine, and ibogaine. While T. iboga mainly presented high concentrations of ibogaine, Tabernaemontana samples either showed a predominance of voacangine and ibogaine, or coronaridine and ibogamine, respectively. The results illustrate the phytochemical proximity between both genera and confirm previous suggestions that Mexican Tabernaemontana species are viable sources of anti‐addictive compounds.  相似文献   
73.
Two conomarphins were purified as the major component of the venom of Conus eburneus. Conomarphins Eb1 and Eb2 showed biological activity in the mollusk Pomacea padulosa, causing sluggishness and retraction of siphon, foot, and cephalic tentacles. To further probe the effects of conserved amino acids and posttranslational modifications in conomarphins, we prepared four synthetic analogues: conomarphin Eb1 Hyp10Pro, Hyp10Ala, d ‐Phe13Ala, and l ‐Phe13 variants. Structure‐activity relationship analysis indicated that d ‐Phe13 is critical to the biological activity of conomarphins. In contrast, amino acid changes at position 10 and removal of posttranslational modification in Hyp10Pro can be tolerated. The high expression level and observed mollusk activity of conomarphins may suggest their potential role as defensive arsenal of Conoidean snails against other predatory gastropods.  相似文献   
74.
75.
The characterization of membrane proteins having no identified function in Mycobacterium tuberculosis is important for a better understanding of the biology of this pathogen. In this work, the biological activity of the Rv2560 protein was characterized and evaluated. Primers used in PCR and RT-PCR assays revealed that the gene encoding protein Rv2560 is present in M. tuberculosis complex strains, but transcribed in only some of them. Sera obtained from rabbits inoculated with polymer peptides from this protein recognized a 33 kDa band in the M. tuberculosis lysate and a membrane fraction corresponding to the predicted molecular mass (33.1 kDa) of this protein. Immunoelectron microscopy analysis found this protein on the mycobacterial membrane. Sixteen peptides covering its entire length were chemically synthesized and tested for their ability to bind to A549 and U937 cells. Peptide 11024 (121VVALSDRATTAYTNTSGVSS140) showed high specific binding to both cell types (dissociation constants of 380 and 800 nm, respectively, and positive receptor-ligand interaction cooperativity), whereas peptide 11033 (284LIGIPVAALIHVYTYRKLSGG304) displayed high binding activity to A549 cells only. Cross-linking assays showed the specific binding of peptide 11024 to a 54 kDa membrane protein on U937. Invasion inhibition assays, in the presence of shared high-activity binding peptide identified for U937 and A549 cells, presented maximum inhibition percentages of 50.53% and 58.27%, respectively. Our work highlights the relevance of the Rv2560 protein in the M. tuberculosis invasion process of monocytes and epithelial cells, and represents a fundamental step in the rational selection of new antigens to be included as components in a multiepitope, subunit-based, chemically synthesized, antituberculosis vaccine.  相似文献   
76.
Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild‐type Arabidopsis thaliana and in T‐DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T‐DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+‐starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+‐sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.  相似文献   
77.
Origins of Life and Evolution of Biospheres - In line with the postulated intermediacy of aminoxazoles derived from small sugars toward the direct assembly of nucleoside precursors, we show here a...  相似文献   
78.
In this research, the in vitro antimicrobial effect of zinc oxide (ZnO), copper oxide (CuO) and iron oxide (Fe2O3) nanoparticles (NPs)—with average sizes of 20, 46 and 30 nm, respectively—on the root rot disease caused by the fungus Fusarium oxysporum and on blight disease caused by the fungus Alternaria solani were studied. Also, bacterial diseases caused by Clavibacter michiganensis and Pseudomonas syringae that infects a wide range of plant species were assessed. Different concentrations of NPs (0, 100, 250, 500, 700 and 1,000 mg/L) were prepared on PDA agar or King's B medium in a complete randomized design with four replicates. According to the results, ZnO NPs exhibited an outstanding inhibitory effect against fungi and bacteria strains. The above results were associated with the smaller particle size. Fungi strains showed a differential sensitivity depending on the kind of NPs used. A. solani showed the highest sensitivity to ZnO NPs at 1,000 mg/L (99%), followed by CuO NPs at the same dose (95%). Fe2O3 NPs at all evaluated doses had no inhibitory effects on the mycelia growth of this strain, although F. oxysporum revealed greater effectiveness of the CuO NPs (96%) compared with ZnO NPs since it only inhibited 91% of the mycelial growth. The antibacterial activity was studied through optical density. C. michiganensis was found to be more sensitive to ZnO NPs because a lesser dose (700 mg/L) was required to reduce the bacterial growth (90%); in comparison, P. syringae required a dose of 1,000 mg/L to inhibit its growth (67%). CuO NPs displayed the smallest growth inhibition against the bacteria strains analysed. The antimicrobial effect of the metallic NPs that were assayed increased with higher doses.  相似文献   
79.
Perinatal development of endothelial nitric oxide synthase-deficient mice   总被引:4,自引:0,他引:4  
The purpose of this study was to evaluate the influence of endothelial nitric oxide synthase (eNOS) deficiency on fetal growth, perinatal survival, and limb development in a mouse model with a targeted mutagenesis of the Nos3 gene. Wild-type (Nos3+/+) and eNOS-deficient fetuses (Nos3-/-) were evaluated on Gestational Day (E)15 and E17, and newborn pups were observed on Day 1 of life (D1). The average term duration of pregnancy was 19 days. For the evaluation of postnatal development, a breeding scheme consisting of Nos3+/- x Nos3+/- and Nos3-/- x Nos3-/- mice was established, and offspring were observed for 3 wk. Southern blotting was used for genotyping. No significant differences in fetal weight, crown-rump lengths (CRL), and placental weight were seen between Nos3+/+ and Nos3-/- fetuses on E15. By E17, Nos3-/- fetuses showed significantly reduced fetal weights, CRL, and placental weights. This difference in body weight was also seen throughout the whole postnatal period. In pregnancies of Nos3-/- females, the average number of pups alive on D1 was significantly decreased compared to either E15 or E17. Placental histology revealed no abnormalities. On E15, E17, and D1, Nos3(-/-) fetuses demonstrated focal acute hemorrhages in the distal limbs in 0%, 2.6%, and 5.7%, respectively, of all mutant mice studied on the respective days. Bone measurements showed significantly shorter bones in the peripheral digits of hindpaws of Nos3-/- newborns. We conclude mice deficient for eNOS show characteristically abnormal prenatal and postnatal development including fetal growth restriction, reduced survival, and an increased rate of limb abnormalities. The development of this characteristic phenotype of eNOS-deficient mice dates back to the prenatal development during the late third trimester of pregnancy.  相似文献   
80.
The facilitative hexose transporter GLUT1 is a multifunctional protein that transports hexoses and dehydroascorbic acid, the oxidized form of vitamin C, and interacts with several molecules structurally unrelated to the transported substrates. Here we analyzed in detail the interaction of GLUT1 with a group of tyrosine kinase inhibitors that include natural products of the family of flavones and isoflavones and synthetic compounds such as the tyrphostins. These compounds inhibited, in a dose-dependent manner, the transport of hexoses and dehydroascorbic acid in human myeloid HL-60 cells, in transfected Chinese hamster ovary cells overexpressing GLUT1, and in normal human erythrocytes, and blocked the glucose-displaceable binding of cytochalasin B to GLUT1 in erythrocyte ghosts. Kinetic analysis of transport data indicated that only tyrosine kinase inhibitors with specificity for ATP binding sites inhibited the transport activity of GLUT1 in a competitive manner. In contrast, those inhibitors that are competitive with tyrosine but not with ATP failed to inhibit hexose uptake or did so in a noncompetitive manner. These results, together with recent evidence demonstrating that GLUT1 is a nucleotide binding protein, support the concept that the inhibitory effect on transport is related to the direct interaction of the inhibitors with GLUT1. We conclude that predicted nucleotide-binding motifs present in GLUT1 are important for the interaction of the tyrosine kinase inhibitors with the transporter and may participate directly in the binding transport of substrates by GLUT1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号