首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   20篇
  207篇
  2022年   5篇
  2021年   2篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   6篇
  2013年   2篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   10篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2002年   4篇
  2001年   6篇
  1999年   6篇
  1998年   10篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有207条查询结果,搜索用时 0 毫秒
71.
72.
73.

Background  

Enterococcus faecium has globally emerged as a cause of hospital-acquired infections with high colonization rates in hospitalized patients. The enterococcal surface protein Esp, identified as a potential virulence factor, is specifically linked to nosocomial clonal lineages that are genetically distinct from indigenous E. faecium strains. To investigate whether Esp facilitates bacterial adherence and intestinal colonization of E. faecium, we used human colorectal adenocarcinoma cells (Caco-2 cells) and an experimental colonization model in mice.  相似文献   
74.
75.
Leptin is an adipokine that acts in the central nervous system and regulates energy balance. Animal models and human observational studies have suggested that leptin surge in the perinatal period has a critical role in programming long-term risk of obesity. In utero exposure to maternal hyperglycemia has been associated with increased risk of obesity later in life. Epigenetic mechanisms are suspected to be involved in fetal programming of long term metabolic diseases. We investigated whether DNA methylation levels near LEP locus mediate the relation between maternal glycemia and neonatal leptin levels using the 2-step epigenetic Mendelian randomization approach. We used data and samples from up to 485 mother-child dyads from Gen3G, a large prospective population-based cohort. First, we built a genetic risk score to capture maternal glycemia based on 10 known glycemic genetic variants (GRS10) and showed it was an adequate instrumental variable (β = 0.046 mmol/L of maternal fasting glucose per additional risk allele; SE = 0.007; P = 7.8 × 10−11; N = 467). A higher GRS10 was associated with lower methylation levels at cg12083122 located near LEP (β = −0.072 unit per additional risk allele; SE = 0.04; P = 0.05; N = 166). Direction and effect size of association between the instrumental variable GRS10 and methylation at cg12083122 were consistent with the negative association we observed using measured maternal glycemia. Lower DNA methylation levels at cg12083122 were associated with higher cord blood leptin levels (β = −0.17 log of cord blood leptin per unit; SE = 0.07; P = 0.01; N = 170). Our study supports that maternal glycemia is part of causal pathways influencing offspring leptin epigenetic regulation.  相似文献   
76.
77.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   
78.
79.
80.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号