首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   12篇
  172篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   13篇
  2015年   7篇
  2014年   6篇
  2013年   13篇
  2012年   9篇
  2011年   6篇
  2010年   9篇
  2009年   10篇
  2008年   7篇
  2007年   8篇
  2006年   11篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   10篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有172条查询结果,搜索用时 0 毫秒
71.
Since the publication of our article (Roth, Gonnet, and Dessimoz: BMC Bioinformatics 2008 9: 518), we have noticed several errors, which we correct in the following.  相似文献   
72.
Clostridium difficile produces two toxins, A and B, which act together to cause pseudomembraneous colitis. The genes encoding these toxins, tcdA and tcdB, are part of the pathogenicity locus, which also includes tcdC, a putative negative regulator of the toxin genes. In this study, we demonstrate that TcdC is a membrane-associated protein in C. difficile.  相似文献   
73.
The structural models created to understand the cytoskeletal mechanics of cells in suspension are described here. Suspended cells can be deformed by well-defined surface stresses in an Optical Stretcher [Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C., K?s, J., 2001. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81(2), 767-784], a two-beam optical trap designed for the contact-free deformation of cells. Suspended cells have a well-defined cytoskeleton, displaying a radially symmetric actin cortical network underlying the cell membrane with no actin stress fibers, and microtubules and intermediate filaments in the interior. Based on experimental data using suspended fibroblasts, we create two structural models: a thick shell actin cortex model that describes cell deformation for a localized stress distribution on these cells and a three-layered model that considers the entire cytoskeleton when a broad stress distribution is applied. Applying the models to data, we obtain a (actin) cortical shear moduli G of approximately 220 Pa for normal fibroblasts and approximately 185 Pa for malignantly transformed fibroblasts. Additionally, modeling the cortex as a transiently crosslinked isotropic actin network, we show that actin and its crosslinkers must be co-localized into a tight shell to achieve these cortical strengths. The similar moduli values and cortical actin and crosslinker densities but different deformabilities of the normal and cancerous cells suggest that a cell's structural strength is not solely determined by cytoskeletal composition but equally importantly by (actin) cytoskeletal architecture via differing cortical thicknesses. We also find that although the interior structural elements (microtubules, nucleus) contribute to the deformed cell's exact shape via their loose coupling to the cortex, it is the outer actin cortical shell (and its thickness) that mainly determines the cell's structural response.  相似文献   
74.
Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi‐protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome‐induced p53‐activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro‐tumorigenic effect of PIDDosome‐mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence‐free survival in HCC patients.  相似文献   
75.
Chicken CD4(+)CD25(+) cells were characterized for mammalian regulatory T cells' suppressive and cytokine production properties. Anti-chicken CD25 mAb was produced in mice and conjugated with a fluorescent tag. The specificity of the Ab against chicken CD25 was confirmed by evaluating Con A-induced CD25 upregulation in thymocytes and by quantifying the CD25 mRNA content of positive and negative cells identified by anti-chicken CD25 Ab. The percentage of CD4(+)CD25(+) cells, expressed as a percentage of CD4(+) cells, in thymus and blood was ~3-7%, in spleen was 10%, and in cecal tonsil, lung, and bone marrow was ~15%. Bursa had no detectable CD4(+)CD25(+) cells. CD25(+) cells were mostly CD4(+) in the thymus, whereas in every other organ studied, CD25(+) cells were distributed between CD4(+) and CD4(-) cells. Chicken thymic CD4(+)CD25(+) cells did not proliferate in vitro in the absence of recombinant chicken IL-2 (rCIL-2). In the presence of rCIL-2, PMA plus ionomycin or Con A stimulated CD4(+)CD25(+) cell proliferation, whereas anti-CD3 plus CD28 did not stimulate CD4(+)CD25(+) cell proliferation. Naive CD4(+)CD25(+) cells had 29-fold more IL-10 mRNA and 15-fold more TGF-β mRNA than the naive CD4(+)CD25(-) cells. Naive CD4(+)CD25(+) had no detectable IL-2 mRNA. Both naive and PMA plus ionomycin-stimulated thymic CD4(+)CD25(+) cells suppressed naive T cell proliferation. The suppressive properties were partially contact dependent. Supplementing CD4(+)CD25(+) cell coculture with rCIL-2 reversed the suppressive properties of CD4(+)CD25(+) cells. Chicken CD4(+)CD25(+) cells have suppressive properties similar to that of mammalian regulatory T cells.  相似文献   
76.
Thymic CD4(+)CD25(+) cells have regulatory-T-cell-like properties in chickens. This study examined the ontogeny of CD4(+)CD25(+) cells in the thymus and in peripheral compartments in chickens. CD4(+)CD25(+) cells started to appear in the thymus at day 15 of incubation (E15), although at low percentages. Expressed as a percentage of CD4(+) cells, CD4(+)CD25(+) cells increased (P<0.01) from 1.7% at E20 to 7.3% at 0 d post-hatch (D0). CD4(+)CD25(+) cells did not appear in the spleen or cecal tonsils of embryos. Expressed as a percentage of CD4(+) cells, CD4(+)CD25(+) cells increased (P<0.01) from 0% at D0 to 27% at D1 in cecal tonsils and from 0% at D0 to 11% at D1 in the spleen. Expressed as a percentage of all mononuclear cells, cecal tonsils at D1 had approximately 3.5-fold higher percentage of CD4(+)CD25(+) cells than the spleen at D1. CD4(+)CD25(+) cells from cecal tonsils of chicks at D1 were suppressive. CD4(+)CD25(+) cells from D0 thymus, when injected back into MHC-compatible chicks, migrated to cecal tonsils and lungs and were detected until 10 d post-injection. CD4(+)CD25(+) cells from cecal tonsils had a higher (P = 0.01) relative amount of CCR9 mRNA than CD4(+)CD25(+) cells from the thymus. It could be concluded that in chickens CD4(+)CD25(+) cells migrate from the thymus immediately post-hatch and preferentially colonize the gut associated lymphoid tissues. CD4(+)CD25(+) cells' preferential migration to cecal tonsils is likely directed through the CCR9 pathway in chickens.  相似文献   
77.
78.
79.
80.
Anni 2.0 is an online tool () to aid the biomedical researcher with a broad range of information needs. Anni provides an ontology-based interface to MEDLINE and retrieves documents and associations for several classes of biomedical concepts, including genes, drugs and diseases, with established text-mining technology. In this article we illustrate Anni's usability by applying the tool to two use cases: interpretation of a set of differentially expressed genes, and literature-based knowledge discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号