首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   13篇
  2015年   7篇
  2014年   6篇
  2013年   13篇
  2012年   9篇
  2011年   6篇
  2010年   9篇
  2009年   10篇
  2008年   7篇
  2007年   8篇
  2006年   11篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   10篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有169条查询结果,搜索用时 671 毫秒
161.
Spike trains from individual antennal olfactory cells of tsetse flies (Glossina spp.) obtained during steady-state conditions (spontaneous as well as during stimulation with 1-octen-3-ol) and dynamic stimulation with repetitive pulses of 1-octen-3-ol were investigated by studying the spike frequency and the temporal structure of the trains. In general, stimulation changes the intensity of the spike activity but leaves the underlying stochastic structure unaffected. This structure turns out to be a renewal process. The only independently varying parameter in this process is the mean interspike interval length, suggesting that olfactory cells of tsetse flies may transmit information via a frequency coding. In spike records with high firing rates, however, the stationary records had significant negative first- order serial correlation coefficients and were non-renewal. Some cells in this study were capable of precisely encoding the onset of the odour pulses at frequencies up to at least 3 Hz. Cells with a rapid return to pre-stimulus activity at the end of stimulation responded more adequately to pulsed stimuli than cells with a long increased spike frequency. While short-firing cells process information via a frequency code, long-firing cells responded with two distinctive phases: a phasic, non-renewal response and a tonic, renewal response which may function as a memory of previous stimulations.   相似文献   
162.
163.
164.
Polymeric scaffolds comprising two size scales of microfibers and submicron fibers can better support three-dimensional (3D) cell growth in tissue engineering, making them an important class of healthcare material. However, a major manufacturing barrier hampers their translation into wider practical use: scalability. Traditional production of two-scale scaffolds by electrospinning is slow and costly. For day-to-day cell cultures, the scaffolds need to be affordable, made in high yield to drive down cost. Combining expertise from academia and industry from the United Kingdom and United States, this study uses a new series of high-yield, low-cost scaffolds made by shear spinning for tissue engineering. The scaffolds comprise interwoven submicron fibers and microfibers throughout as observed under scanning electron microscopy and demonstrate good capability to support cell culturing for tumor modeling. Three model human cancer cell lines (HEK293, A549 and MCF-7) with stable expression of GFP were cultured in the scaffolds and found to exhibit efficient cell attachment and sustained 3D growth and proliferation for 30 days. Cryosection and multiphoton fluorescence microscopy confirmed the formation of compact 3D cell clusters throughout the scaffolds. In addition, comparative growth curves of 2D and 3D cultures show significant cell-type-dependent differences. This work applies high-yield shear-spun scaffolds in mammalian tissue engineering and brings practical, affordable applications of multiscale scaffolds closer to reality. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2750, 2019.  相似文献   
165.
Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53‐mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53‐mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non‐centrosomal protein SMC5 is also TP53‐dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.  相似文献   
166.
A low temperature-assisted and oxalyl dihydrazide fuel-induced combustion synthesized series of uncalcined MgAl2O4:Eu3+ nanophosphors showed an average crystallite size of ~20 nm, and bandgap energy (Eg) of 4.50–5.15 eV, and were validated using density functional theory and found to match closely with the experimental values. The photoluminescence characteristic emission peaks of Eu3+ ions were recorded between 480 and 680 nm. The nanophosphors excited at 392 nm showed f–f transitions assigned as 5D07FJ (J = 0, 1, 2, and 3). The optimized MgAl2O4 phosphors had Commission Internationale de l'Eclairage coordinates in the red region, a correlated colour temperature of 2060 K, and a colour purity of 98.83%. The estimated luminescence quantum efficiency ( η) was observed to be ~63% using Judd–Ofelt analysis. Electrochemical and photocatalytic performance were explored and indicated its multifunctional applications. Therefore, MgAl2O4:Eu3+ nanophosphors could be used for the fabrication of light-emitting diodes, industrial dye degradation, and as electrodes for supercapacitor applications.  相似文献   
167.
168.
The long history of eosin Y, eosin B and the methyl and ethyl eosins is recounted as well as their synthesis, the variety of their molecular species and some of the myriad applications of these dyes. Chromatographic techniques are described that reveal the purity or lack of it in commercial samples. Toxicological studies are discussed that suggest that the eosins are virtually non toxic, but efforts to remove them from the environment imply that there may be some risk.  相似文献   
169.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号