首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   4篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有80条查询结果,搜索用时 31 毫秒
61.
Seven foliar applications of 0.025M K2HPO4 and KH2PO4 (both plus Tween 20) and the commercial systemic fungicides, Dorado (Pyrifenox) 480 EC, Penconazole EC and Benomyl, were applied at 14-day intervals starting at 10-cm shoot length on field-grown Chardonnay winegrapes. Both phosphates and systemic fungicides inhibited development of powdery mildew fungus (Uncinula necator, Schw., Burr.) on fruit clusters, as compared with untreated control vines. Diseases, everity on clusters of plants treated with K2HPO4 and fungicides was 0.3 and 0.2, respectively, as compared with 1.3 on control clusters (on a 0–4 scale), for the first rating, conducted 10 days after the fifth application of fungicides and phosphates, Five days after the last application, disease severity was 3.5 on non-treated control clusters and 0.3 and 0.8 on clusters treated with Dorado and K2HPO4, respectively. Powdery mildew infection remarkably reduced the weight of non-treated control clusters as compared with Dorado and phosphate treated clusters. Phosphate treatment caused an increase (3-fold) of peroxidase activity in the soluble fraction of non-infected control berries. A remarkable peroxidase enhancement was detected in the soluble (8-fold) and ionically bound (2-fold) fractions from the phosphate-treated and infected berries. Results indicate that phosphates can be used as foliar fertilizers for disease control in the field and that peroxidase might, be involved in the defense process.  相似文献   
62.
63.
Although terrestrial CO2 concentrations, [CO2] are not expected to reach 1000 micromoles mol-1 for many decades, CO2 levels in closed systems such as growth chambers and glasshouses, can easily exceed this concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1 (1%). Here we studied the effect of six CO2 concentrations, from ambient up to 10000 micromoles mol-1, on seed yield, growth and gas exchange of two wheat cultivars (USU-Apogee and Veery-l0). Elevating [CO2] from 350 to 1000 micromoles mol-1 increased seed yield (by 33%), vegetative biomass (by 25%) and number of heads m-2 (by 34%) of wheat plants. Elevation of [CO2] from 1000 to 10000 micromoles mol-1 decreased seed yield (by 37%), harvest index (by 14%), mass per seed (by 9%) and number of seeds per head (by 29%). This very high [CO2] had a negligible, non-significant effect on vegetative biomass, number of heads m-2 and seed mass per head. A sharp decrease in seed yield, harvest index and seeds per head occurred by elevating [CO2] from 1000 to 2600 micromoles mol-1. Further elevation of [CO2] from 2600 to 10000 micromoles mol-1 caused a further but smaller decrease. The effect of CO2 on both wheat cultivars was similar for all growth parameters. Similarly there were no differences in the response to high [CO2] between wheat grown hydroponically in growth chambers under fluorescent lights and those grown in soilless media in a glasshouse under sunlight and high pressure sodium lamps. There was no correlation between high [CO2] and ethylene production by flag leaves or by wheat heads. Therefore, the reduction in seed set in wheat plants is not mediated by ethylene. The photosynthetic rate of whole wheat plants was 8% lower and dark respiration of the wheat heads 25% lower when exposed to 2600 micromoles mol-1 CO2 compared to ambient [CO2]. It is concluded that the reduction in the seed set can be mainly explained by the reduction in the dark respiration in wheat heads, when most of the respiration is functional and is needed for seed development.  相似文献   
64.
Enhanced Net K Uptake Capacity of NaCl-Adapted Cells   总被引:1,自引:0,他引:1       下载免费PDF全文
Maintenance of intracellular K+ concentrations that are not growth-limiting, in an environment of high Na+, is characteristic of NaCl-adapted cells of the glycophyte, tobacco (Nicotiana tabacum/gossii). These cells exhibited a substantially greater uptake of 86Rb+ (i.e. an indicator of K+) relative to unadapted cells. Potassium uptake into NaCl-adapted cells was 1.5-fold greater than unadapted cells at 0 NaCl and 3.5-fold greater when cells were exposed to 160 millimolar NaCl. The difference in net K+ uptake between unadapted and NaCl-adapted cells was due primarily to higher rates of entry rather than to reduced K+ leakage. Presumably, enhanced K+ uptake into adapted cells is a result of electrophoretic flux, and a component of uptake may be linked to vanadate-sensitive H+ extrusion.  相似文献   
65.
66.
A platform for specifically modulating kinase-dependent signaling using peptides derived from the catalytic domain of the kinase is presented. This technology, termed KinAce, utilizes the canonical structure of protein kinases. The targeted regions (subdomain V and subdomains IX and X) are analyzed and their sequence, three-dimensional structure, and involvement in protein-protein interaction are highlighted. Short myristoylated peptides were derived from the target regions of the tyrosine kinases c-Kit and Lyn and the serine/threonine kinases 3-phosphoinositide-dependent kinase-1 (PDK1) and Akt/protein kinase B (PKB). For each kinase an active designer peptide is shown to selectively inhibit the signaling of the kinase from which it is derived, and to inhibit cancer cell proliferation in the micromolar range. This technology emerges as an applicable tool for deriving sequence-based selective inhibitors for a broad range of protein kinases as hits that may be further developed into drugs. Moreover, it enables identification of novel kinase targets for selected therapeutic indications as demonstrated in the KinScreen application.  相似文献   
67.
Carrot cells (Daucus carota L.) in suspension culture exposed to medium containing 150 mM NaCl plasmolyzed immediately and deplasmolyzed within 35 to 40 hr. Three days after exposure to NaCl the cells resumed proliferation. Accommodation to salinity and renewal of growth was accompanied by absorption of Na+ from the external medium. On completion of deplasmolysis, K+ concentration in the cytosol doubled and Na+ concentration approximated that of K+. The vacuolar K+ concentration was practically unchanged while Na+ accumulated to a concentration double that of K+. Cl−- accumulation started later and eventually exceeded that of Na+ plus K+. Malate was redistributed during accommodation to salinity and eventually returned to its initial level. Amino acid content in the cytosol increased fivefold, while in the vacuole it remained unchanged. These results show that: 1) recovery from osmotic shock requires absorption of easily penetrating solute, mainly Na+; 2) distribution of solutes, absorbed or synthesized in cells exposed to salinity, is a dynamic process; 3) cells could grow and proliferate in high NaCl content in the cytosol; 4) red beet root cells grown in the presence of NaCl contain higher cytoplasmic Na+ than K+; and 5) during adjustment to salinity small spherical carrot cells survive the osmotic shock and do not show any detectable damage.  相似文献   
68.
Olfactory-discrimination learning was shown to induce a profound long-lasting enhancement in the strength of excitatory and inhibitory synapses of pyramidal neurons in the piriform cortex. Notably, such enhancement was mostly pronounced in a sub-group of neurons, entailing about a quarter of the cell population. Here we first show that the prominent enhancement in the subset of cells is due to a process in which all excitatory synapses doubled their strength and that this increase was mediated by a single process in which the AMPA channel conductance was doubled. Moreover, using a neuronal-network model, we show how such a multiplicative whole-cell synaptic strengthening in a sub-group of cells that form a memory pattern, sub-serves a profound selective enhancement of this memory. Network modeling further predicts that synaptic inhibition should be modified by complex learning in a manner that much resembles synaptic excitation. Indeed, in a subset of neurons all GABAA-receptors mediated inhibitory synapses also doubled their strength after learning. Like synaptic excitation, Synaptic inhibition is also enhanced by two-fold increase of the single channel conductance. These findings suggest that crucial learning induces a multiplicative increase in strength of all excitatory and inhibitory synapses in a subset of cells, and that such an increase can serve as a long-term whole-cell mechanism to profoundly enhance an existing Hebbian-type memory. This mechanism does not act as synaptic plasticity mechanism that underlies memory formation but rather enhances the response of already existing memory. This mechanism is cell-specific rather than synapse-specific; it modifies the channel conductance rather than the number of channels and thus has the potential to be readily induced and un-induced by whole-cell transduction mechanisms.  相似文献   
69.
70.
Respiration rates of Lemna gibba fronds and Orobanche aegyptiacaand Lactuca sativa seedlings, were measured with a Clark typeoxygen electrode in the presence or absence of a carbon-dioxideabsorber (KOH) in the gas phase. Measured respiration ratesin the presence of KOH were 17-34% higher than in its absence.The suppression of respiration by high CO2 concentrations, [CO2],was confirmed by parallel studies of CO2 efflux, made by infraredgas spectrometry. These results are consistent with other reportsof reduced rates of respiration at high [CO2]. Measurements of respiration quotients of Lemna and Lactuca weremade at 0 and 100 Pa [CO2]. Results did not support the possibilityof induced dark fixation of CO2 at the ambient atmospheric [CO2]predicted for the next century (35-100 Pa). It is concluded that the numerous reports of respiration measurementsmade with O2 electrodes, in the absence of a CO2 absorber, maycontain a significant errorCopyright 1993, 1999 Academic Press Lemna gibba, Lactuca sativa, Orobanche aegyptiaca, CO2 accumulation, O2 electrode, respiration, dark CO2 fixation, respiration quotient, atmospheric CO2  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号