首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1698篇
  免费   138篇
  2022年   8篇
  2021年   19篇
  2020年   13篇
  2019年   14篇
  2018年   17篇
  2017年   25篇
  2016年   52篇
  2015年   68篇
  2014年   89篇
  2013年   99篇
  2012年   143篇
  2011年   148篇
  2010年   89篇
  2009年   80篇
  2008年   105篇
  2007年   86篇
  2006年   61篇
  2005年   91篇
  2004年   88篇
  2003年   64篇
  2002年   64篇
  2001年   35篇
  2000年   26篇
  1999年   27篇
  1998年   22篇
  1997年   11篇
  1996年   10篇
  1995年   15篇
  1994年   20篇
  1993年   15篇
  1992年   13篇
  1991年   15篇
  1990年   20篇
  1989年   14篇
  1988年   16篇
  1987年   12篇
  1986年   12篇
  1985年   8篇
  1983年   8篇
  1982年   14篇
  1980年   8篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1975年   8篇
  1974年   6篇
  1973年   5篇
  1970年   4篇
  1969年   5篇
排序方式: 共有1836条查询结果,搜索用时 31 毫秒
81.
82.
Local excess of nitric oxide (NO) has been implicated in beta-cell damage, thus, a possible approach to the treatment of autoimmune IDDM is the selective inhibition of inducible nitric oxide synthase (iNOS). A series of variously substituted hexahydropyridazine-1-carbothioamides, -carbothioimidic acid esters and -carboximidamides was synthesized and dose-dependently evaluated as potential inhibitors of iNOS. The screening of the title compounds was performed with insulin-producing RIN-5AH cells and a combination of IL1-1 beta and IFN-gamma as inducers of cellular NO production. The structure-activity analysis revealed that the variation of substituents in the position 1 of the hexahydropyridazine strongly influences the inhibitory activity to iNOS as well as being critical for RIN cell survival. Among the compounds tested, the hexahydropyridazine-1-carbothioamides showed particularly significant inhibitory effects. However, for an efficient iNOS inhibition substitution at the nitrogen of the 1-carbothioamide group is important. Thus, the introduction of aliphatic chains such as propyl or butyl and of cyclic moieties such as cyclohexyl, 3-methoxyphenyl, and 4-methoxyphenyl (IC(50): 0.5-2.1 mM), respectively, provided compounds with similar inhibitory activity to aminoguanidine (IC(50): 0.3 mM), a common standard substance used for the selective inhibition of iNOS. However, the 1-carboximidamides, which represent more structurally related semicyclic derivatives of aminoguanidine, caused only incomplete iNOS inhibition. The hexahydropyridazine-1-carbothioimidic acid esters caused dose- and substituent-dependent damage of RIN-5AH cells. The toxicity of the synthesized compounds increased markedly if aliphatic substituents at the exocyclic N atom(s) were replaced by variously substituted aromatic rings.  相似文献   
83.
84.
LmrA is an ATP binding cassette (ABC) multidrug transporter in Lactococcus lactis that is a structural and functional homologue of the human multidrug resistance P-glycoprotein MDR1 (ABCB1). LmrA is also homologous to MsbA, an essential ABC transporter in Escherichia coli involved in the trafficking of lipids, including Lipid A. We have compared the substrate specificities of LmrA and MsbA in detail. Surprisingly, LmrA was able to functionally substitute for a temperature-sensitive mutant MsbA in E. coli WD2 at non-permissive temperatures, suggesting that LmrA could transport Lipid A. LmrA also exhibited a Lipid A-stimulated, vanadate-sensitive ATPase activity. Reciprocally, the expression of MsbA conferred multidrug resistance on E. coli. Similar to LmrA, MsbA interacted with photoactivatable substrate [3H]azidopine, displayed a daunomycin, vinblastine, and Hoechst 33342-stimulated vanadate-sensitive ATPase activity, and mediated the transport of ethidium from cells and Hoechst 33342 in proteoliposomes containing purified and functionally reconstituted protein. Taken together, these data demonstrate that MsbA and LmrA have overlapping substrate specificities. Our observations imply the presence of structural elements in the recently published crystal structures of MsbA in E. coli and Vibrio cholera (Chang, G., and Roth, C. B. (2001) Science 293, 1793-1800; Chang, G. (2003) J. Mol. Biol. 330, 419-430) that support drug-protein interactions and suggest a possible role for LmrA in lipid trafficking in L. lactis.  相似文献   
85.
Staphylococcus aureus, a common cause of nosocomial infections, is able to invade eukaryotic cells by indirectly engaging beta1 integrin-containing host receptors, whereas non-pathogenic Staphylococcus carnosus is not invasive. Here, we identify intracellular signals involved in integrin-initiated internalization of S. aureus. In particular, the host cell actin cytoskeleton and Src family protein-tyrosine kinases (PTKs) are essential to mediate S. aureus invasion. Src PTKs are activated in response to pathogenic S. aureus, but not S. carnosus. In addition, pharmacological and genetic interference with Src PTK function reduces bacterial internalization. Importantly, Src PTK-deficient cells are resistant to S. aureus invasion, demonstrating the essentiality of host Src PTKs in integrin-mediated uptake of this pathogen.  相似文献   
86.
87.
The stratigraphie and regional distribution of Oxfordian scleractinian reef corals in the Korallenoolith Formation (NW German Malm Group) is described from the Süntel, Deister, Kleiner Deisler and Osterwald Mountains. In the study area four horizons with (par-) autochthonous corals are developed two of which can be traced region-wide (Untere Korallenbank Member andflorigemma-Bank Member / Obere Korallenbank Member). The coral fauna of the biostromes, forming the Untere Korallenbank Member, is impoverished and dominated by ubiquitous r-strategists. In contrast, the reefal bioconstruetions of theflorigemma-Bank Member show a high variability in their regional appearances, partly forming highly diverse coral associations. The highest diversity is developed in the patch reefs from the Obere Korallenbank Member of the Osterwald Mountains (about 40 species). Corals are an important part of the Korallenoolith fauna. Altogether, 20 species belonging to 15 genera have been identified which were formerly unknown from NW German Oxfordian successions.  相似文献   
88.
For the first time, the nickel site of the hydrogen sensor of Ralstonia eutropha, the regulatory [NiFe] hydrogenase (RH), was investigated by X-ray absorption spectroscopy (XAS) at the nickel K-edge. The oxidation state and the atomic structure of the Ni site were investigated in the RH in the absence (air-oxidized, RH(ox)) and presence of hydrogen (RH(+H2)). Incubation with hydrogen is found to cause remarkable changes in the spectroscopic properties. The Ni-C EPR signal, indicative of Ni(III), is detectable only in the RH(+H2) state. XANES and EXAFS spectra indicate a coordination of the Ni in the RH(ox) and RH(+H2) that pronouncedly differs from the one in standard [NiFe] hydrogenases. Also, the changes induced by exposure to H(2) are unique. A drastic modification in the XANES spectra and an upshift of the K-edge energy from 8339.8 (RH(ox)) to 8341.1 eV (RH(+H2)) is observed. The EXAFS spectra indicate a change in the Ni coordination in the RH upon exposure to H(2). One likely interpretation of the data is the detachment of one sulfur ligand in RH(+H2) and the binding of additional (O,N) or H ligands. The following Ni oxidation states and coordinations are proposed: five-coordinated Ni(II)(O,N)(2)S(3) for RH(ox) and six-coordinated Ni((III))(O,N)(3)X(1)S(2) [X being either an (O,N) or H ligand] for RH(+H2). Implications of the structural features of the Ni site of the RH in relation to its function, hydrogen sensing, are discussed.  相似文献   
89.
Wegener's granulomatosis (WG) is an autoimmune disease of as yet unknown etiology. To date it has remained obscure what causes WG or determines disease progression. Case reports suggest that viral infections such as cytomegalovirus (CMV) reactivation may contribute to disease flares. In this study we found a skewing of the phenotype of CMV-specific CD8+tet(ramer)+ T-cells in WG. A marked proportion of these cells displayed a late differentiated "effector memory" T-cell phenotype with decreased expression of CD28 and CD62L, and heterogeneous CD27 expression, features which were also seen in CD8+tet- T-cells in WG, but not in controls. Our results might reflect profound generalized changes in the CD8+ T-cell compartment also affecting virus-specific T-cell responses in WG.  相似文献   
90.
Two fragments of the receptor for glucagon-like peptide-1 (GLP-1), each containing the N-terminal domain, were expressed and characterized in either bacterial or mammalian cells. The first fragment, rNT-TM1, included the N-terminal domain and first transmembrane helix and was stably expressed in the membrane of human embryonic kidney 293 cells. The second, 6H-rNT, consisted of only the N-terminal domain of the receptor fused with a polyhistidine tag at its N terminus. The latter fragment was expressed in Escherichia coli in the form of inclusion bodies from which the protein was subsequently purified and refolded in vitro. Although both receptor fragments displayed negligible (125)I-labeled GLP-1(7-36)amide-specific binding, they both displayed high affinity for the radiolabeled peptide antagonist (125)I-exendin-4(9-39). Competition binding studies demonstrated that the N-terminal domain of the GLP-1 receptor maintains high affinity for the agonist exendin-4 as well as the antagonists exendin-4(3-39) and exendin-4(9-39) whereas, in contrast, GLP-1 affinity was greatly reduced. This study shows that although the exendin antagonists are not dependent upon the extracellular loops and transmembrane helices for maintaining their normal high affinity binding, the endogenous agonist GLP-1 requires regions outside of the N-terminal domain. Hence, distinct structural features in exendin-4, between residues 9 and 39, provide additional affinity for the N-terminal domain of the receptor. These data are consistent with a model for the binding of peptide ligands to the GLP-1 receptor in which the central and C-terminal regions of the peptides bind to the N terminus of the receptor, whereas the N-terminal residues of peptide agonists interact with the extracellular loops and transmembrane helices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号