首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   19篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   15篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   14篇
  2003年   6篇
  2002年   12篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
71.
Summary Bloom's syndrome is one of the congenital disorders known to have increased frequency of acute leukaemia. The complex cytogenetic findings in the leukaemic cells of a 39-year-old male with Bloom's syndrome are described. These included a translocation t(7;17), missing 7q and 17p, a reciprocal translocation t(4;22); del 3q, del 8q22, del 20q, missing 12 and missing Y. In the same patient a missing Y had been noted 10 years previously in 15% of his peripheral blood lymphocytes.  相似文献   
72.
73.
Here we describe the crystal structure of the N-terminal domain of the FK506-binding protein (FKBP) from wheat (wFKBP73), which is the first structure presenting three FK domains (wFK73_1, wFK73_2 and wFK73_3). The crystal model includes wFK73_2 and wFK73_3 domains and only part of the wFK73_1 domain. The wFK73_1 domain is responsible for binding FK506 and for peptidyl prolyl cis/trans isomerase (PPIase) activity, while the wFK73_2 and wFK73_3 domains lack these activities. A structure-based sequence comparison demonstrated that the absence of a large enough hydrophobic pocket important for PPIase activity, and of the conserved residues necessary for drug binding in the wFK73_2 and wFK73_3 domains explains the lack of these activities in these domains. Sequence and structural comparison between the three wFKBP73 domains suggest that the wFK73_2 domain is the most divergent. A structural comparison of the FK domains of wFKBP73 with other FKBPs containing more than one FK domain, revealed that while the overall architecture of each of the three FK domains displays a typical FKBP fold, their relative arrangement in space is unique and may have important functional implications. We suggest that the existence of FKBPs with three FK domains offers additional interactive options for these plant proteins enlarging the overall regulatory functions of these proteins.  相似文献   
74.
Molecular imaging of cell death in vivo by a novel small molecule probe   总被引:3,自引:0,他引:3  
Apoptosis has a role in many medical disorders, therefore assessment of apoptosis in vivo can be highly useful for diagnosis, follow-up and evaluation of treatment efficacy. ApoSense is a novel technology, comprising low molecular-weight probes, specifically designed for imaging of cell death in vivo. In the current study we present targeting and imaging of cell death both in vitro and in vivo, utilizing NST-732, a member of the ApoSense family, comprising a fluorophore and a fluorine atom, for both fluorescent and future positron emission tomography (PET) studies using an 18F label, respectively. In vitro, NST-732 manifested selective and rapid accumulation within various cell types undergoing apoptosis. Its uptake was blocked by caspase inhibition, and occurred from the early stages of the apoptotic process, in parallel to binding of Annexin-V, caspase activation and alterations in mitochondrial membrane potential. In vivo, NST-732 manifested selective uptake into cells undergoing cell-death in several clinically-relevant models in rodents: (i) Cell-death induced in lymphoma by irradiation; (ii) Renal ischemia/reperfusion; (iii) Cerebral stroke. Uptake of NST-732 was well-correlated with histopathological assessment of cell-death. NST-732 therefore represents a novel class of small-molecule detectors of apoptosis, with potential useful applications in imaging of the cell death process both in vitro and in vivo. Revital Aloya and Anat Shirvan are equal contribution to the paper  相似文献   
75.
Elevation of the intracellular calcium concentration ([Ca2+]i) to levels below 1 microm alters synaptic transmission and induces short-term plasticity. To identify calcium sensors involved in this signalling, we investigated soluble C2 domain-containing proteins and found that both DOC2A and DOC2B are modulated by submicromolar calcium levels. Fluorescent-tagged DOC2A and DOC2B translocated to plasma membranes after [Ca2+]i elevation. DOC2B translocation preceded DOC2A translocation in cells co-expressing both isoforms. Half-maximal translocation occurred at 450 and 175 nm[Ca2+]i for DOC2A and DOC2B, respectively. This large difference in calcium sensitivity was accompanied by a modest kinetic difference (halftimes, respectively, 2.6 and 2.0 s). The calcium sensitivity of DOC2 isoforms can be explained by predicted topologies of their C2A domains. Consistently, neutralization of aspartates D218 and D220 in DOC2B changed its calcium affinity. In neurones, both DOC2 isoforms were reversibly recruited to the plasma membrane during trains of action potentials. Consistent with its higher calcium sensitivity, DOC2B translocated at lower depolarization frequencies. Styryl dye uptake experiments in hippocampal neurones suggest that the overexpression of mutated DOC2B alters the synaptic activity. We conclude that both DOC2A and DOC2B are regulated by neuronal activity, and hypothesize that their calcium-dependent translocation may regulate synaptic activity.  相似文献   
76.
77.
Organic acids are important components of overall fruit quality through flavor, taste, nutritional and medicinal values. Pollinated fig (Ficus carica L.) fruit quality is enhanced by increased acidity. We quantified the major organic acids and characterized the expression pattern of organic acid metabolic pathway-related genes in the reproductive part – inflorescence and non-reproductive part – receptacle of parthenocarpic and pollinated fig fruit during ripening. Essentially, pollinated fruit contains seeds in the inflorescence, as opposed to no seeds in the parthenocarpic inflorescence. The major organic acids – citrate and malate – were found in relatively high quantities in the inflorescence compared to the receptacle of both parthenocarpic and pollinated fig fruit. Notably, pollination increased citric acid content significantly in both inflorescence and receptacle. Genes related to the phosphoenolpyruvate carboxylase (PEPC) cycle, tricarboxylic acid cycle, citrate catabolism and glyoxylate cycle were identified in fig fruit. Expression levels of most of these genes were higher in inflorescences than in receptacles. In particular, FcPEPC and FcFUM (encoding fumarase) had significantly higher expression in the inflorescence of pollinated fruit. Most importantly, expression of the glyoxylate cycle genes FcMLS and FcICL (encoding malate synthase and isocitrate lyase, respectively) was induced to strikingly high levels in the inflorescence by pollination, and their expression level was highly positively correlated with the contents of all organic acids. Therefore, the glyoxylate cycle may be responsible for altering the accumulation of organic acids to upgrade the fruit taste during ripening, especially in the pollinated, seeded inflorescence.  相似文献   
78.
Highlights? Global translation elongation pause at 5′ end of ORFs in severe heat shock ? Modulation of Hsp70 levels/activity affects elongation pausing ? Pausing is associated with hydrophobic N termini ? Hsp70 shows reduced ribosome association and altered interactions in heat stress  相似文献   
79.
MicroRNAs (miRs) are considered major contributors to the evolution of animal morphological complexity. Multiple bursts of novel miR families were documented throughout animal evolution, yet, their evolutionary origins are not understood. Here, we discuss two alternative genomic sources for novel miR families, namely, transposable elements, which were previously described, and a newly proposed origin: CpG islands. We show that these two origins are evolutionarily distinct and that they correspond to marked differences in several functional and genomic characteristics. Together, our results shed light on the intriguing origin of one of the major constituents of regulatory networks in animals, miRs.  相似文献   
80.
The ability to move on solid surfaces provides ecological advantages for bacteria, yet many bacterial species lack this trait. We found that Xanthomonas spp. overcome this limitation by making use of proficient motile bacteria in their vicinity. Using X. perforans and Paenibacillus vortex as models, we show that X. perforans induces surface motility, attracts proficient motile bacteria and ‘rides'' them for dispersal. In addition, X. perforans was able to restore surface motility of strains that lost this mode of motility under multiple growth cycles in the lab. The described interaction occurred both on agar plates and tomato leaves and was observed between several xanthomonads and motile bacterial species. Thus, suggesting that this motility induction and hitchhiking strategy might be widespread and ecologically important. This study provides an example as to how bacteria can rely on the abilities of their neighboring species for their own benefit, signifying the importance of a communal organization for fitness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号