首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   58篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   12篇
  2018年   18篇
  2016年   14篇
  2015年   28篇
  2014年   31篇
  2013年   26篇
  2012年   62篇
  2011年   45篇
  2010年   34篇
  2009年   21篇
  2008年   32篇
  2007年   29篇
  2006年   29篇
  2005年   18篇
  2004年   31篇
  2003年   27篇
  2002年   22篇
  2001年   11篇
  2000年   10篇
  1999年   11篇
  1998年   6篇
  1996年   7篇
  1995年   4篇
  1992年   10篇
  1991年   12篇
  1990年   13篇
  1989年   9篇
  1988年   10篇
  1986年   5篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   9篇
  1978年   5篇
  1977年   11篇
  1976年   5篇
  1975年   6篇
  1974年   11篇
  1973年   8篇
  1972年   8篇
  1971年   6篇
  1970年   6篇
  1967年   4篇
  1966年   4篇
  1961年   4篇
  1959年   4篇
排序方式: 共有749条查询结果,搜索用时 15 毫秒
91.
The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our?study implicates five networks of kinases that?regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in?vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.  相似文献   
92.
The Na(+)-Ca(2+) exchanger (NCX) mediated Ca(2+) fluxes are essential for handling Ca(2+) homeostasis in many cell-types. Eukaryotic NCX variants contain regulatory CBD1 and CBD2 domains, whereas in distinct variants the Ca(2+) binding to Ca3-Ca4 sites of CBD1 results either in sustained activation, inhibition or no effect. CBD2 contains an alternatively spliced segment, which is expressed in a tissue-specific manner although its impact on allosteric regulation remains unclear. Recent studies revealed that the Ca(2+) binding to Ca3-Ca4 sites results in interdomain tethering of CBDs, which rigidifies CBDs movements with accompanied slow dissociation of "occluded" Ca(2+). Here we investigate the effects of CBD2 variants on Ca(2+) occlusion in the two-domain construct (CBD12). Mutational studies revealed that both sites (Ca3 and Ca4) contribute to Ca(2+) occlusion, whereas after dissociation of the first Ca(2+) ion the second Ca(2+) ion becomes occluded. This mechanism is common for the brain, kidney and cardiac splice variants of CBD12, although the occluded Ca(2+) exhibits 20-50-fold difference in off-rates among the tested variants. Therefore, the spliced exons on CBD2 affect the rate-limiting step of the occluded Ca(2+) dissociation at the primary regulatory sensor to shape dynamic features of allosteric regulation in NCX variants.  相似文献   
93.
The new prenylflavonoid, solophenol A (1), together with three known compounds, bonannione A (2), sophoraflavanone A (3) and (2S)-5,7-dihydroxy-4'-methoxy-8-prenylflavanone (4), were isolated from propolis collected from Malaita Island in The Solomon Islands. The structure of each compound was determined by spectroscopic methods, including mass spectrometry and 2D NMR. Compound 1 exhibited potent 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity.  相似文献   
94.
Plant secondary metabolites (SMs) acting as defensive chemicals in reproductive organs such as fruit tissues play roles in both mutualistic and antagonistic interactions between plants and seed dispersers/predators. The directed-deterrence hypothesis states that SMs in ripe fruits deter seed predators but have little or no effect on seed dispersers. Indeed, studies have demonstrated that birds are able to cope with fruit SMs whereas rodents are deterred by them. However, this mechanism was only demonstrated at the class level, i.e., between birds and mammals, based on differences in the vanilloid receptors. Here we present experimental and behavioral data demonstrating the use of the broad-range, class-independent "mustard oil bomb" mechanism in Ochradenus baccatus fruits to force a behavioral change at an ecological timescale, converting rodents from seed predators to seed dispersers. This is achieved by a unique compartmentalization of the mustard oil bomb, causing activation of the system only upon seed and pulp coconsumption, encouraging seed dispersal via seed spitting by rodents. Our findings demonstrate the power of SMs to shift the animal-plant relationship from predation to mutualism and provide support for the directed-deterrence hypothesis at the intraspecific level, in addition to the interspecific level.  相似文献   
95.
This review provides an overview of the structure, function, and catalytic mechanism of lacZ β‐galactosidase. The protein played a central role in Jacob and Monod's development of the operon model for the regulation of gene expression. Determination of the crystal structure made it possible to understand why deletion of certain residues toward the amino‐terminus not only caused the full enzyme tetramer to dissociate into dimers but also abolished activity. It was also possible to rationalize α‐complementation, in which addition to the inactive dimers of peptides containing the “missing” N‐terminal residues restored catalytic activity. The enzyme is well known to signal its presence by hydrolyzing X‐gal to produce a blue product. That this reaction takes place in crystals of the protein confirms that the X‐ray structure represents an active conformation. Individual tetramers of β‐galactosidase have been measured to catalyze 38,500 ± 900 reactions per minute. Extensive kinetic, biochemical, mutagenic, and crystallographic analyses have made it possible to develop a presumed mechanism of action. Substrate initially binds near the top of the active site but then moves deeper for reaction. The first catalytic step (called galactosylation) is a nucleophilic displacement by Glu537 to form a covalent bond with galactose. This is initiated by proton donation by Glu461. The second displacement (degalactosylation) by water or an acceptor is initiated by proton abstraction by Glu461. Both of these displacements occur via planar oxocarbenium ion‐like transition states. The acceptor reaction with glucose is important for the formation of allolactose, the natural inducer of the lac operon.  相似文献   
96.

Background

Antiretroviral Treatment (ART) significantly reduces HIV transmission. We conducted a cost-effectiveness analysis of the impact of expanded ART in South Africa.

Methods

We model a best case scenario of 90% annual HIV testing coverage in adults 15–49 years old and four ART eligibility scenarios: CD4 count <200 cells/mm3 (current practice), CD4 count <350, CD4 count <500, all CD4 levels. 2011–2050 outcomes include deaths, disability adjusted life years (DALYs), HIV infections, cost, and cost per DALY averted. Service and ART costs reflect South African data and international generic prices. ART reduces transmission by 92%. We conducted sensitivity analyses.

Results

Expanding ART to CD4 count <350 cells/mm3 prevents an estimated 265,000 (17%) and 1.3 million (15%) new HIV infections over 5 and 40 years, respectively. Cumulative deaths decline 15%, from 12.5 to 10.6 million; DALYs by 14% from 109 to 93 million over 40 years. Costs drop $504 million over 5 years and $3.9 billion over 40 years with breakeven by 2013. Compared with the current scenario, expanding to <500 prevents an additional 585,000 and 3 million new HIV infections over 5 and 40 years, respectively. Expanding to all CD4 levels decreases HIV infections by 3.3 million (45%) and costs by $10 billion over 40 years, with breakeven by 2023. By 2050, using higher ART and monitoring costs, all CD4 levels saves $0.6 billion versus current; other ART scenarios cost $9–194 per DALY averted. If ART reduces transmission by 99%, savings from all CD4 levels reach $17.5 billion. Sensitivity analyses suggest that poor retention and predominant acute phase transmission reduce DALYs averted by 26% and savings by 7%.

Conclusion

Increasing the provision of ART to <350 cells/mm3 may significantly reduce costs while reducing the HIV burden. Feasibility including HIV testing and ART uptake, retention, and adherence should be evaluated.  相似文献   
97.

Background

Tumor suppressor gene TUSC2/FUS1 (TUSC2) is frequently inactivated early in lung cancer development. TUSC2 mediates apoptosis in cancer cells but not normal cells by upregulation of the intrinsic apoptotic pathway. No drug strategies currently exist targeting loss-of–function genetic abnormalities. We report the first in-human systemic gene therapy clinical trial of tumor suppressor gene TUSC2.

Methods

Patients with recurrent and/or metastatic lung cancer previously treated with platinum-based chemotherapy were treated with escalating doses of intravenous N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP):cholesterol nanoparticles encapsulating a TUSC2 expression plasmid (DOTAP:chol-TUSC2) every 3 weeks.

Results

Thirty-one patients were treated at 6 dose levels (range 0.01 to 0.09 milligrams per kilogram). The MTD was determined to be 0.06 mg/kg. Five patients achieved stable disease (2.6–10.8 months, including 2 minor responses). One patient had a metabolic response on positron emission tomography (PET) imaging. RT-PCR analysis detected TUSC2 plasmid expression in 7 of 8 post-treatment tumor specimens but not in pretreatment specimens and peripheral blood lymphocyte controls. Proximity ligation assay, performed on paired biopsies from 3 patients, demonstrated low background TUSC2 protein staining in pretreatment tissues compared with intense (10–25 fold increase) TUSC2 protein staining in post-treatment tissues. RT-PCR gene expression profiling analysis of apoptotic pathway genes in two patients with high post-treatment levels of TUSC2 mRNA and protein showed significant post-treatment changes in the intrinsic apoptotic pathway. Twenty-nine genes of the 82 tested in the apoptosis array were identified by Igenuity Pathway Analysis to be significantly altered post-treatment in both patients (Pearson correlation coefficient 0.519; p<0.01).

Conclusions

DOTAP:chol-TUSC2 can be safely administered intravenously in lung cancer patients and results in uptake of the gene by human primary and metastatic tumors, transgene and gene product expression, specific alterations in TUSC2-regulated pathways, and anti-tumor effects (to our knowledge for the first time for systemic DOTAP:cholesterol nanoparticle gene therapy).

Trial Registration

ClinicalTrials.gov NCT00059605  相似文献   
98.
CEfrag is a new fragment screening technology based on affinity capillary electrophoresis (ACE). Here we report on the development of a mobility shift competition assay using full-length human heat shock protein 90α (Hsp90α), radicicol as the competitor probe ligand, and successful screening of the Selcia fragment library. The CEfrag assay was able to detect weaker affinity (IC(50) >500 μM) fragments than were detected by a fluorescence polarization competition assay using FITC-labeled geldanamycin. The binding site of selected fragments was determined by co-crystallization with recombinant Hsp90α N-terminal domain and X-ray analysis. The results of this study confirm that CEfrag is a sensitive microscale technique enabling detection of fragments binding to the biological target in near-physiological solution.  相似文献   
99.
Na(+)/Ca(2+) exchanger (NCX) proteins mediate Ca(2+)-fluxes across the cell membrane to maintain Ca(2+) homeostasis in many cell types. Eukaryotic NCX contains Ca(2+)-binding regulatory domains, CBD1 and CBD2. Ca(2+) binding to a primary sensor (Ca3-Ca4 sites) on CBD1 activates mammalian NCXs, whereas CALX, a Drosophila NCX ortholog, displays an inhibitory response to regulatory Ca(2+). To further elucidate the underlying regulatory mechanisms, we determined the 2.7 ? crystal structure of mammalian CBD12-E454K, a two-domain construct that retains wild-type properties. In conjunction with stopped-flow kinetics and SAXS (small-angle X-ray scattering) analyses of CBD12 mutants, we show that Ca(2+) binding to Ca3-Ca4 sites tethers the domains via a network of interdomain salt-bridges. This Ca(2+)-driven interdomain switch controls slow dissociation of "occluded" Ca(2+) from the primary sensor and thus dictates Ca(2+) sensing dynamics. In the Ca(2+)-bound conformation, the interdomain angle of CBD12 is very similar in NCX and CALX, meaning that the interdomain distances cannot account for regulatory diversity in NCX and CALX. Since the two-domain interface is nearly identical among eukaryotic NCXs, including CALX, we suggest that the Ca(2+)-driven interdomain switch described here represents a general mechanism for initial conduction of regulatory signals in NCX variants.  相似文献   
100.
Lung cancer is one of the leading cancer malignancies, with a five-year survival rate of only ~15%. We have developed a lentiviral-vector-mediated mouse model, which enables generation of non-small-cell lung cancer from less than 100 alveolar epithelial cells, and investigated the role of IKK2 and NF-κB in lung-cancer development. IKK2 depletion in tumour cells significantly attenuated tumour proliferation and significantly prolonged mouse survival. We identified Timp1, one of the NF-κB target genes, as a key mediator for tumour growth. Activation of the Erk signalling pathway and cell proliferation requires Timp-1 and its receptor CD63. Knockdown of either Ikbkb or Timp1 by short hairpin RNAs reduced tumour growth in both xenograft and lentiviral models. Our results thus suggest the possible application of IKK2 and Timp-1 inhibitors in treating lung cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号