首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   50篇
  611篇
  2023年   5篇
  2022年   6篇
  2021年   7篇
  2020年   4篇
  2019年   12篇
  2018年   16篇
  2016年   12篇
  2015年   23篇
  2014年   24篇
  2013年   21篇
  2012年   56篇
  2011年   41篇
  2010年   32篇
  2009年   20篇
  2008年   29篇
  2007年   26篇
  2006年   25篇
  2005年   15篇
  2004年   26篇
  2003年   22篇
  2002年   19篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1996年   7篇
  1995年   4篇
  1992年   3篇
  1991年   8篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1975年   3篇
  1974年   9篇
  1973年   5篇
  1972年   6篇
  1971年   5篇
  1970年   4篇
  1967年   5篇
  1961年   4篇
  1959年   4篇
排序方式: 共有611条查询结果,搜索用时 15 毫秒
61.
Neutrophil accumulation in the lung plays a pivotal role in the pathogenesis of acute lung injury during sepsis. Directed movement of neutrophils is mediated by a group of chemoattractants, especially CXC chemokines. Local lung production of CXC chemokines is intensified during experimental sepsis induced by cecal ligation and puncture (CLP), as reflected by rising levels of MIP-2 and cytokine-induced neutrophil chemoattractant-1 in bronchoalveolar lavage fluids. Alveolar macrophages are primed and blood neutrophils are down-regulated for production of MIP-2 and cytokine-induced neutrophil chemoattractant production in response to LPS and C5a. Under these conditions of stimulation, activation of MAPKs (p38, p42/p44) occurs in sham neutrophils but not in CLP neutrophils, while under the same conditions phosphorylation of p38 and p42/p44 occurs in both sham and CLP alveolar macrophages. These data indicate that, under septic conditions, there is impaired signaling in neutrophils and enhanced signaling in alveolar macrophages, resulting in CXC chemokine production, and C5a appears to play a pivotal role in this process. As a result, CXC chemokines increase in lung, setting the stage for neutrophil accumulation in lung during sepsis.  相似文献   
62.

Background

Acute otitis media (OM) is a common disease which often develops through complex interactions between the host, the pathogen and environmental factors. We studied single nucleotide polymorphisms (SNPs) of genes involved in innate and adaptive immunity, and other host and environmental factors for their role in OM.

Methods

Using Sequenom Massarray platform, 21 SNPs were studied in 653 children from prospective (n = 202) and retrospective (n = 451) cohorts. Data were analyzed for the relationship between SNPs and upper respiratory infection (URI) frequency, risk of acute OM during URI episodes, and proneness to recurrent OM.

Results

Increased risk for OM proneness was associated with CX3CR1 (Thr280Met) SNP and with a jointly interactive group of IL-10 (−1082) SNP, IL-1β (−511) wild type genotype and white race. Family history of OM proneness independently increased the risk for frequent URIs, OM occurrence during URI, and OM proneness. Additionally, IL-1β (−31) SNP was associated with increased risk for frequent URIs, but IL-10 (−592), IL-1β (−511), IL-5 (−746) and IL-8 (−251) SNPs were associated with decreased risk of URI.

Conclusion

IL-1β (−31), CX3CR1 (Thr280Met), IL-10 (−1082) and IL-1β (−511) SNPs were associated with increased risk for frequent URIs or OM proneness.  相似文献   
63.
Three of Malaysia’s endangered large mammal species are experiencing contrasting futures. Populations of the Sumatran rhino (Dicerorhinus sumatrensis) have dwindled to critically low numbers in Peninsular Malaysia (current estimates need to be revised) and the state of Sabah (less than 40 individuals estimated). In the latter region, a bold intervention involving the translocation of isolated rhinos is being developed to concentrate them into a protected area to improve reproduction success rates. For the Asian elephant (Elephas maximus), recently established baselines for Peninsular Malaysia (0.09 elephants/km2 estimated from one site) and Sabah (between 0.56 and 2.15 elephants/km2 estimated from four sites) seem to indicate globally significant populations based on dung count surveys. Similar surveys are required to monitor elephant population trends at these sites and to determine baselines elsewhere. The population status of the Malayan tiger (Panthera tigris jacksoni) in Peninsular Malaysia, however, remains uncertain as only a couple of scientifically defensible camera-trapping surveys (1.66 and 2.59 tigers/100 km2 estimated from two sites) have been conducted to date. As conservation resources are limited, it may be prudent to focus tiger monitoring and protection efforts in priority areas identified by the National Tiger Action Plan for Malaysia. Apart from reviewing the conservation status of rhinos, elephants and tigers and threats facing them, we highlight existing and novel conservation initiatives, policies and frameworks that can help secure the long-term future of these iconic species in Malaysia.  相似文献   
64.
65.
Colicinogenic cells are immune to the lethal effect of the colicin which they produce. In the presence of very high concentrations of colicin, however, colicinogenic cells are no longer immune to the homologous colicin. This phenomenon, immunity breakdown, was studied with colicins Ia and Ib. The biochemical effects of colicin Ib on Escherichia coli were studied with a standard noncolicinogenic strain. At multiplicities of about 10 or higher, colicin Ib inhibited incorporation of leucine into protein and incorporation of (32)P-inorganic phosphate into deoxyribonucleic acid and ribonucleic acid by more than 95%. Under the same conditions, (32)P incorporation into phospholipid and nucleotide fractions was inhibited only partially (about 80 and 60%, respectively). Inhibition of (32)P incorporation into the terminal phosphorus of adenosine triphosphate was also considerably less than that of macromolecular synthesis (50 to 60%). (32)P incorporation into the nonnucleotide organic phosphate fraction was not inhibited. Respiration was not affected. Colicin Ia showed the same biochemical effects as colicin Ib. A mutant of an Ib-colicinogenic E. coli strain selected for resistance to low concentrations of colicin Ia was shown to be resistant to high concentrations of homologous colicin Ib, whereas the parent Ib-colicinogenic strain is sensitive to high concentrations of colicin Ib. This mutant lost its specific receptors for colicin Ib. Moreover, the biochemical effects of high concentrations of colicin Ib on Ib-colicinogenic cells during immunity breakdown were similar to the effects found in sensitive cells exposed to low concentrations of the same colicin. It is concluded that the killing of colicinogenic cells in the presence of high concentrations of homologous colicin is indeed caused by the homologous colicin molecules.  相似文献   
66.
Many studies have suggested the involvement of wild-type (wt) p53 in the repair of DNA double-strand breaks (DSBs) via DNA end-joining (EJ) process. To investigate this possibility, we compared the capacity and fidelity of DNA EJ in RKO cells containing wt p53 and RKO cells containing no p53 (RKO cells with p53 knockdown). The p53 knockdown cells showed lower fidelity of DNA EJ compared to the control RKO cells. The DNA end-protection assay revealed the association of a protein complex including heterogeneous nuclear ribonucleoprotein G (hnRNP G) with the DNA ends in RKO cells containing wt p53, but not with the DNA ends in RKO cells with p53 knockdown. Depletion of endogenous hnRNP G notably diminished the fidelity of EJ in RKO cells expressing wt p53. Moreover, an ectopic expression of hnRNP G significantly enhanced the fidelity of DNA EJ and the protection of DNA ends in human cancer cells lacking hnRNP G protein or containing mutant hnRNP G. Finally, using recombinant hnRNP G proteins, we demonstrated the hnRNP G protein is able to bind to and protect DNA ends from degradation of nucleases. Our results suggest that wt p53 modulates DNA DSB repair by, in part, inducing hnRNP G, and the ability of hnRNP G to bind and protect DNA ends may contribute its ability to promote the fidelity of DNA EJ.  相似文献   
67.
The known action of uridine triphosphate (UTP) to contract some types of vascular smooth muscle, and the present finding that it is more potent than adenosine triphosphate in eliciting an increase in cytosolic Ca2+ concentration in aortic smooth muscle, led us to investigate the mode of action of this nucleotide. With this aim, cultured bovine aorta cells were subjected to patch-clamp methodologies under various conditions. Nucleotide-induced variations in cytosolic Ca2+ were monitored by using single channel recordings of the high conductance Ca2+-activated K+ (Maxi-K) channel within on-cell patches as a reporter, and whole-cell currents were measured following perforation of the patch. In cells bathed in Na+-saline, UTP (>30 nm) induced an inward current, and both Maxi-K channel activity and unitary current amplitude of the Maxi-K channel transiently increased. Repetitive exposures elicited similar responses when 5 to 10 min wash intervals were allowed between challenges of nucleotide. Oscillations in channel activity, but not oscillation in current amplitude were frequently observed with UTP levels > 0.1 m. Cells bathed in K+ saline (150 m) were less sensitive to UTP (5-fold), and did not show an increase in unitary Maxi-K current amplitude. Since the increase in amplitude occurs due to depolarization of the cell membrane, a change in amplitude was not observed in cells previously depolarized with K+ saline. The enhancement of Maxi-K channel activity in the presence of UTP was not diminished by Ca2+ entry blockers or by removal of extracellular Ca2+. However, in the latter case, repetitive responses progressively declined. These observations, as well as data comparing the action of low concentrations of Ca2+ ionophores (<5 m) to that of UTP indicate that both agents elevate cytosolic Ca2+ by mobilization of this ion from intracellular pools. However, the Ca2+ ionophore did not cause membrane depolarization, and thus did not change unitary current amplitude. The effect of UTP on Maxi-K channel activity and current amplitude was blocked by pertussis toxin and by phorbol 12-myristate 13-acetate (PMA), but was not modified by okadaic acid, or by inhibitors of protein kinase C (PKC). Our data support a model in which a pyrimidinergic receptor is coupled to a G protein, and this interaction mediates release of Ca2+ from intracellular pools, presumably via the phosphatidyl inositol pathway. This also results in activation of membrane channels that give rise to an inward current and depolarization. Ultimately, smooth muscle contraction ensues. PKC does not appear to be directly involved, even though the UTP response is blocked by low nm levels of PMA. While the latter data implicate PKC in diminishing the UTP response, agents that inhibit either PKC or phosphatase activity did not prevent abolition of UTP responses by PMA, nor did they modify basal channel activity.  相似文献   
68.

Background

The human lung is exposed to a large number of airborne pathogens as a result of the daily inhalation of 10,000 liters of air. Innate immunity is thus essential to defend the lungs against these pathogens. This defense is mediated in part through the recognition of specific microbial ligands by Toll-like receptors (TLR) of which there are at least 10 in humans. Pseudomonas aeruginosa is the main pathogen that infects the lungs of cystic fibrosis patients. Based on whole animal experiments, using TLR knockout mice, the control of this bacterium is believed to occur by the recognition of LPS and flagellin by TLRs 2,4 and 5, respectively.

Methodology/Principal Findings

In the present study, we investigated in vitro the role of these same TLR and ligands, in alveolar macrophage (AM) and epithelial cell (EC) activation. Cellular responses to P. aeruginosa was evaluated by measuring KC, TNF-α, IL-6 and G-CSF secretion, four different markers of the innate immune response. AM and EC from WT and TLR2, 4, 5 and MyD88 knockout mice for were stimulated with the wild-type P. aeruginosa or with a mutant devoid of flagellin production.

Conclusions/Significance

The results clearly demonstrate that only two ligand/receptor pairs are necessary for the induction of KC, TNF-α, and IL-6 synthesis by P. aeruginosa-activated cells, i.e. TLR2,4/LPS and TLR5/flagellin. Either ligand/receptor pair is sufficient to sense the bacterium and to trigger cell activation, and when both are missing lung EC and AM are unable to produce such a response as were cells from MyD88−/− mice.  相似文献   
69.
Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR) recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z) displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1) costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号