首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   584篇
  免费   36篇
  620篇
  2022年   2篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   11篇
  2017年   11篇
  2016年   11篇
  2015年   23篇
  2014年   17篇
  2013年   39篇
  2012年   42篇
  2011年   38篇
  2010年   31篇
  2009年   37篇
  2008年   37篇
  2007年   39篇
  2006年   44篇
  2005年   48篇
  2004年   28篇
  2003年   28篇
  2002年   28篇
  2001年   8篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1993年   3篇
  1992年   4篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1986年   4篇
  1985年   7篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1911年   2篇
排序方式: 共有620条查询结果,搜索用时 14 毫秒
501.
Mutations at the Drosophila melanogaster brainiac locus lead to defective formation of the follicular epithelium during oogenesis and to neural hyperplasia. The brainiac gene encodes a type II transmembrane protein structurally similar to mammalian beta1,3-glycosyltransferases. We have cloned the brainiac gene from D. melanogaster genomic DNA and expressed it as a FLAG-tagged recombinant protein in Sf9 insect cells. Glycosyltransferase assays showed that brainiac is capable of transferring N-acetylglucosamine (GlcNAc) to beta-linked mannose (Man), with a marked preference for the disaccharide Man(beta1,4)Glc, the core of arthro-series glycolipids. The activity of brainiac toward arthro-series glycolipids was confirmed by showing that the enzyme efficiently utilized glycolipids from insects as acceptors whereas it did not with glycolipids from mammalian cells. Methylation analysis of the brainiac reaction product revealed a beta1,3 linkage between GlcNAc and Man, proving that brainiac is a beta1,3GlcNAc-transferase. Human beta1,3GlcNAc-transferases structurally related to brainiac were unable to transfer GlcNAc to Man(beta1,4)Glc-based acceptor substrates and failed to rescue a homozygous lethal brainiac allele, indicating that these proteins are paralogous and not orthologous to brainiac.  相似文献   
502.
Ecologically meaningful predictors are often neglected in plant distribution studies, resulting in incomplete niche quantification and low predictive power of species distribution models (SDMs). Because environmental data are rare and expensive to collect, and because their relationship with local climatic and topographic conditions are complex, mapping them over large geographic extents and at high spatial resolution remains a major challenge. Here, we propose to derive environmental data layers by mapping ecological indicator values in space. We combined ~6 million plant occurrences with expert-based plant ecological indicator values (EIVs) of 3600 species in Switzerland. EIVs representing local soil properties (pH, moisture, moisture variability, aeration, humus and nutrients) and climatic conditions (continentality, light) were modelled at 93 m spatial resolution with the Random Forest algorithm and 16 predictors representing meso-climate, land use, topography and geology. Models were evaluated and predictions of EIVs were compared with soil inventory data. We mapped each EIV separately and evaluated EIV importance in explaining the distribution of 500 plant species using SDMs with a set of 30 environmental predictors. Finally, we tested how they improve an ensemble of SDMs compared to a standard set of predictors for ca 60 plant species. All EIV models showed excellent performance (|r| > 0.9) and predictions were correlated reasonably (|r| > 0.4) to soil properties measured in the field. Resulting EIV maps were among the most important predictors in SDMs. Also, in ensemble SDMs overall predictive performance increased, mainly through improved model specificity reducing species range overestimation. Combining large citizen science databases to expert-based EIVs is a powerful and cost–effective approach for generalizing local edaphic and climatic conditions over large areas. Producing ecologically meaningful predictors is a first step for generating better predictions of species distribution which is of main importance for decision makers in conservation and environmental management projects.  相似文献   
503.

Background  

Invasive aspergillosis (IA) is a major cause of infectious morbidity and mortality in immune compromised patients. Studies on the pathogenesis of IA have been limited by the difficulty to monitor disease progression in real-time. For real-time monitoring of the infection, we recently engineered a bioluminescent A. fumigatus strain.  相似文献   
504.
In patients requiring mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ARDS), tidal volume reduction decreases mortality, but the mechanisms of the protective effect have not been fully explored. To test the hypothesis that alveolar macrophage activation is an early and critical event in the initiation of ventilator-induced lung injury (VILI), rats were ventilated with high tidal volume (HV(T)) for 10 min to 4 h. Alveolar macrophage counts in bronchoalveolar lavage (BAL) fluid decreased 45% by 20 min of HV(T) (P < 0.05) consistent with activation-associated adhesion. Depletion of alveolar macrophages in vivo with liposomal clodronate significantly decreased permeability and pulmonary edema following 4 h of HV(T) (P < 0.05). BAL fluid from rats exposed to 20 min of HV(T) increased nitric oxide synthase activity nearly threefold in na?ve primary alveolar macrophages (P < 0.05) indicating that soluble factors present in the air spaces contribute to macrophage activation in VILI. Media from cocultures of alveolar epithelial cell monolayers and alveolar macrophages exposed to 30 min of stretch in vitro also significantly increased nitrite production in na?ve macrophages (P < 0.05), but media from stretched alveolar epithelial cells or primary alveolar macrophages alone did not, suggesting alveolar epithelial cell-macrophage interaction was required for the subsequent macrophage activation observed. These data demonstrate that injurious mechanical ventilation rapidly activates alveolar macrophages and that alveolar macrophages play an important role in the initial pathogenesis of VILI.  相似文献   
505.
The main objective of this study was to evaluate the effects of salt stress on the photosynthetic electron transport chain using two chickpea lines (Cicer arietinum L.) differing in their salt stress tolerance at the germination stage (AKN 87 and AKN 290). Two weeks after sowing, seedlings were exposed to salt stress for 2 weeks and irrigated with 200 ml of 200 mM NaCl every 2 days. The polyphasic OJIP fluorescence transient and the 820-nm transmission kinetics (photosystem I) were used to evaluate the effects of salt stress on the functionality of the photosynthetic electron transport chain. It was observed that a signature for salt stress was a combination of a higher J step (VJ), a smaller IP amplitude, and little or no effect on the primary quantum yield of PSII (φPo). We observed for AKN 290 a shorter leaf life cycle, which may represent a mechanism to cope with salt stress. For severely salt-stressed leaves, an inhibition of electron flow between the PQ pool and P700 was found. The data also suggest that the properties of electron flow beyond PSI are affected by salt stress.  相似文献   
506.
To elucidate the evolutionary history of snow voles, genus Chionomys, we studied the phylogeography of Chionomysnivalis across its range and investigated its relationships with two congeneric species, Chionomysgud and Chionomysroberti, using independent molecular markers. Analyses were based on mitochondrial (~940 bp cyt b) and Y-chromosomal (~2020 bp from three introns) genetic variation. Our data provide conclusive evidence for a Caucasian and Middle Eastern origin for the three species and a subsequent westward expansion of C.nivalis. In addition, we discuss the taxonomic status of the genus Chionomys in relation to the genus Microtus.  相似文献   
507.
Human mate preferences have received a great deal of attention in recent decades because of their centrality to sexual selection, which is thought to play a substantial role in human evolution. Most of this attention has been on universal aspects of mate preferences, but variation between individuals is less understood. In particular, the relative contribution of genetic and environmental influences to variation in mate preferences is key to sexual selection models but has barely been investigated in humans, and results have been mixed in other species. Here, we used data from over 4000 mostly female twins who ranked the importance of 13 key traits in a potential partner. We used the classical twin design to partition variation in these preferences into that due to genes, family environment, and residual factors. In women, there was significant variability in the broad-sense heritability of individual trait preferences, with physical attractiveness the most heritable (29%) and housekeeping ability the least (5%). Over all the trait preferences combined, broad-sense heritabilities were highly significant in women and marginally significant in men, accounting for 20% and 19% of the variation, respectively; family environmental influences were much smaller. Heritability was a little higher in reproductive aged than in nonreproductive aged women, but the difference was not significant.  相似文献   
508.
Chromosome segregation requires coordinated separation of sister chromatids following biorientation of all chromosomes on the mitotic spindle. Chromatid separation at the metaphase-to-anaphase transition is accomplished by cleavage of the cohesin complex that holds chromatids together. Here we show using live-cell imaging that extending the metaphase bioriented state using five independent perturbations (expression of non-degradable Cyclin B, expression of a Spindly point mutant that prevents spindle checkpoint silencing, depletion of the anaphase inducer Cdc20, treatment with a proteasome inhibitor, or treatment with an inhibitor of the mitotic kinesin CENP-E) leads to eventual scattering of chromosomes on the spindle. This scattering phenotype is characterized by uncoordinated loss of cohesion between some, but not all sister chromatids and subsequent spindle defects that include centriole separation. Cells with scattered chromosomes persist long-term in a mitotic state and eventually die or exit. Partial cohesion loss-associated scattering is observed in both transformed cells and in karyotypically normal human cells, albeit at lower penetrance. Suppressing microtubule dynamics reduces scattering, suggesting that cohesion at centromeres is unable to resist dynamic microtubule-dependent pulling forces on the kinetochores. Consistent with this view, strengthening cohesion by inhibiting the two pathways responsible for its removal significantly inhibits scattering. These results establish that chromosome scattering due to uncoordinated partial loss of chromatid cohesion is a common outcome following extended arrest with bioriented chromosomes in human cells. These findings have important implications for analysis of mitotic phenotypes in human cells and for development of anti-mitotic chemotherapeutic approaches in the treatment of cancer.  相似文献   
509.
Transforming growth factor beta-induced protein (TGFBIp), is secreted into the extracellular space. When fragmentation of C-terminal portions is blocked, apoptosis is low, even when the protein is overexpressed. If fragmentation occurs, apoptosis is observed. Whether full-length TGFBIp or integrin-binding fragments released from its C-terminus is necessary for apoptosis remains equivocal. More importantly, the exact portion of the C-terminus that conveys the pro-apoptotic property of TGFBIp is uncertain. It is reportedly within the final 166 amino acids. We sought to determine if this property is dependent upon the final 69 amino acids containing the integrin-binding, EPDIM and RGD, sequences. With MG-63 osteosarcoma cells, transforming growth factor (TGF)-β1 treatment increased expression of TGFBIp over 72 h (p < 0.001). At this time point, apoptosis was significantly increased (p < 0.001) and was prevented by an anti-TGFBIp, polyclonal antibody (p < 0.05). Overexpression of TGFBIp by transient transfection produced a 2-fold increase in apoptosis (p < 0.01). Exogenous purified TGFBIp at concentrations of 37–150 nM produced a dose dependent increase in apoptosis (p < 0.001). Mass spectrometry analysis of TGFBIp isolated from conditioned medium of cells treated with TGF-β1 revealed truncated forms of TGFBIp that lacked integrin-binding sequences in the C-terminus. Recombinant TGFBIp truncated, similarly, at amino acid 614 failed to induce apoptosis. A recombinant fragment encoding the final 69 amino acids of the TGFBIp C-terminus produced significant apoptosis. This apoptosis level was comparable to that induced by TGF-β1 upregulation of endogenous TGFBIp. Mutation of the integrin-binding sequence EPDIM, but not RGD, blocked apoptosis (p < 0.001). These pro-apoptotic actions are dependent on the C-terminus most likely to interact with integrins.  相似文献   
510.
Interleukin-12 (IL-12) can promote tumor regression via activation of multiple lymphocytic and myelocytic effectors. Whereas the cytotoxic mechanisms employed by T/NK/NKT cells in IL-12-mediated tumor kill are well defined, the antitumor role of macrophage-produced cytotoxic metabolites has been more controversial. To this end, we investigated the specific role of nitric oxide (NO), a major macrophage effector molecule, in post-IL-12 tumor regression. Analysis of tumors following a single intratumoral injection of slow-release IL-12 microspheres showed an IFNγ-dependent sevenfold increase in inducible nitric oxide synthase (iNOS) expression within 48 h. Flow cytometric analysis of tumor-resident leukocytes and in vivo depletion studies identified CD11b+ F4/80+ Gr1lo macrophages as the primary source of iNOS. Blocking of post-therapy iNOS activity with N-nitro-l-arginine methyl ester (L-NAME) dramatically enhanced tumor suppression revealing the inhibitory effect of NO on IL-12-driven antitumor immunity. Superior tumor regression in mice receiving combination treatment was associated with enhanced survival and proliferation of activated tumor-resident CD8+ T-effector/memory cells (Tem). These findings demonstrate that macrophage-produced NO negatively regulates the antitumor activity of IL-12 via its detrimental effects on CD8+ T cells and identify L-NAME as a potent adjuvant in IL-12 therapy of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号