首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1094篇
  免费   111篇
  2021年   13篇
  2020年   11篇
  2019年   15篇
  2018年   16篇
  2017年   16篇
  2016年   15篇
  2015年   32篇
  2014年   29篇
  2013年   68篇
  2012年   64篇
  2011年   55篇
  2010年   41篇
  2009年   55篇
  2008年   64篇
  2007年   62篇
  2006年   77篇
  2005年   68篇
  2004年   49篇
  2003年   50篇
  2002年   43篇
  2001年   34篇
  2000年   26篇
  1999年   22篇
  1998年   13篇
  1997年   15篇
  1996年   5篇
  1995年   13篇
  1994年   7篇
  1993年   9篇
  1992年   18篇
  1991年   15篇
  1990年   14篇
  1989年   12篇
  1988年   7篇
  1987年   8篇
  1986年   8篇
  1985年   12篇
  1984年   14篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1979年   6篇
  1978年   4篇
  1977年   7篇
  1976年   8篇
  1975年   4篇
  1974年   7篇
  1973年   5篇
  1972年   5篇
  1971年   8篇
排序方式: 共有1205条查询结果,搜索用时 31 毫秒
31.
Flying vertebrates have been hypothesized to have a high capacity for paracellular absorption of nutrients. This could be due to high permeability of the intestines to nutrient-sized molecules (i.e., in the size range of amino acids and glucose, MW 75–180 Da). We performed intestinal luminal perfusions of an insectivorous bat, Tadarida brasiliensis. Using radio-labeled molecules, we measured the uptake of two nutrients absorbed by paracellular and transporter-mediated mechanisms (l-proline, MW 115 Da, and d-glucose, MW 180 Da) and two carbohydrates that have no mediated transport (l-arabinose, MW 150 Da, and lactulose, MW 342 Da). Absorption of lactulose (0.61 ± 0.06 nmol min? 1 cm? 1) was significantly lower than that of the smaller arabinose (1.09 ± 0.04 nmol min? 1 cm? 1). Glucose absorption was significantly lower than that of proline at both nutrient concentrations (10 mM and 75 mM). Using the absorption of arabinose to estimate the portion of proline absorption that is paracellular, we calculated that 25.1 ± 3.0% to 66.2 ± 7.8% of proline absorption is not transporter-mediated (varying proline from 1 mM to 75 mM). These results confirm our predictions that 1) paracellular absorption is molecule size selective, 2) absorption of proline would be greater than glucose absorption in an insectivore, and 3) paracellular absorption represents a large fraction of total nutrient absorption in bats.  相似文献   
32.
Intestinal alkaline phosphatase (IAP) is an enzyme of the brush border of the enterocyte. The activity of IAP biphasically depends on calcium. Although calcium increases IAP activity, when calcium is higher than 20 mmole/L, IAP activity decreases and the amount of an aggregated form increases. The reversibility of the effect of calcium and the aggregation process are unknown. The isoelectric point of the enzyme was higher in the presence of calcium, but was the same for the enzyme and the aggregated form. The treatment with EGTA after calcium addition did not restore the enzymatic activity but produced desaggregation of the enzyme and increase in the monomeric subunits of IAP. It is concluded that the binding of calcium does not produce important modifications on the structure of the protein, that the inhibitory effect is not reversible and that calcium could be involved in the stability of the structure of the enzyme.  相似文献   
33.
Multidrugs have the potential to bypass resistance. We investigated the in vitro activity and resistance circumvention of the multidrug cytarabine-L-fluorodeoxyuridine (AraC-L-5FdU), linked via a glycerophospholipid linkage. Cytotoxicity was determined using sensitive (A2780, FM3A/0) and resistant (AG6000, AraC resistant, deoxycytidine kinase deficient; FM3A/TK-, 5FdU resistant, thymidine kinase deficient) cell lines. Circumvention of nucleoside transporter and activating enzymes was determined using specific inhibitors, HPLC analysis and standard radioactivity assays. AraC-L-5FdU was active (IC50: 0.03 μM in both A2780 and FM3A/0), had some activity in AG6000 (IC50: 0.28 μ M), but no activity in FM3A/TK? (IC50: 18.3 μM). AraC-nucleotides were not detected in AG6000. 5FdU-nucleotides were detected in all cell lines. AraC-L-5FdU did not inhibit TS in FM3A/TK? (5%). Since phosphatase/nucleotidase-inhibition reduced cytotoxicity 7–70-fold, cleavage seems to be outside the cell, presumably to nucleotides, and then to nucleosides. The multidrug was orally active in the HT-29 colon carcinoma xenografts which are resistant toward the single drugs.  相似文献   
34.

Background

Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep.

Methods

Fourty-four healthy men (mean age 25.0±5.5 years) underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each) in a randomized cross-over design.

Results

Comparison of sleep EEG power density spectra of frontal (F3A2) and central (C3A2) derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8–4.6 Hz) in non-REM sleep was reduced in an altitude-dependent manner (∼4% at 1630 m and 15% at 2590 m), while theta activity (4.6–8 Hz) was reduced only at the highest altitude (10% at 2590 m). In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI), oxygen desaturation index (ODI), and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4–8 Hz and 13–14.4 Hz) and breathing variables (AHI, ODI; 0.8–4.6 Hz).

Conclusions

The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure.  相似文献   
35.
The predominant mechanism of drug resistance in African trypanosomes is decreased drug uptake due to loss-of-function mutations in the genes for the transporters that mediate drug import. The role of transporters as determinants of drug susceptibility is well documented from laboratory-selected Trypanosoma brucei mutants. But clinical isolates, especially of T. b. gambiense, are less amenable to experimental investigation since they do not readily grow in culture without prior adaptation. Here we analyze a selected panel of 16 T. brucei ssp. field isolates that (i) have been adapted to axenic in vitro cultivation and (ii) mostly stem from treatment-refractory cases. For each isolate, we quantify the sensitivity to melarsoprol, pentamidine, and diminazene, and sequence the genomic loci of the transporter genes TbAT1 and TbAQP2. The former encodes the well-characterized aminopurine permease P2 which transports several trypanocides including melarsoprol, pentamidine, and diminazene. We find that diminazene-resistant field isolates of T. b. brucei and T. b. rhodesiense carry the same set of point mutations in TbAT1 that was previously described from lab mutants. Aquaglyceroporin 2 has only recently been identified as a second transporter involved in melarsoprol/pentamidine cross-resistance. Here we describe two different kinds of TbAQP2 mutations found in T. b. gambiense field isolates: simple loss of TbAQP2, or loss of wild-type TbAQP2 allele combined with the formation of a novel type of TbAQP2/3 chimera. The identified mutant T. b. gambiense are 40- to 50-fold less sensitive to pentamidine and 3- to 5-times less sensitive to melarsoprol than the reference isolates. We thus demonstrate for the first time that rearrangements of the TbAQP2/TbAQP3 locus accompanied by TbAQP2 gene loss also occur in the field, and that the T. b. gambiense carrying such mutations correlate with a significantly reduced susceptibility to pentamidine and melarsoprol.  相似文献   
36.

Background

Travel to mountain areas is popular. However, the effects of acute exposure to moderate altitude on the cardiovascular system and metabolism are largely unknown.

Objectives

To investigate the effects of acute exposure to moderate altitude on vascular function, metabolism and systemic inflammation.

Methods

In 51 healthy male subjects with a mean (SD) age of 26.9 (9.3) years, oxygen saturation, blood pressure, heart rate, arterial stiffness, lipid profiles, low density lipoprotein (LDL) particle size, insulin resistance (HOMA-index), highly-sensitive C-reactive protein and pro-inflammatory cytokines were measured at 490 m (Zurich) and during two days at 2590 m, (Davos Jakobshorn, Switzerland) in randomized order. The largest differences in outcomes between the two altitudes are reported.

Results

Mean (SD) oxygen saturation was significantly lower at 2590 m, 91.0 (2.0)%, compared to 490 m, 96.0 (1.0)%, p<0.001. Mean blood pressure (mean difference +4.8 mmHg, p<0.001) and heart rate (mean difference +3.3 bpm, p<0.001) were significantly higher at 2590 m, compared to 490 m, but this was not associated with increased arterial stiffness. At 2590 m, lipid profiles improved (median difference triglycerides −0.14 mmol/l, p = 0.012, HDL +0.08 mmol/l, p<0.001, total cholesterol/HDL-ratio −0.25, p = 0.001), LDL particle size increased (median difference +0.45 nm, p = 0.048) and hsCRP decreased (median difference −0.18 mg/l, p = 0.024) compared to 490 m. No significant change in pro-inflammatory cytokines or insulin resistance was observed upon ascent to 2590 m.

Conclusions

Short-term stay at moderate altitude is associated with increased blood pressure and heart rate likely due to augmented sympathetic activity. Exposure to moderate altitude improves the lipid profile and systemic inflammation, but seems to have no significant effect on glucose metabolism.

Trial Registration

ClinicalTrials.gov NCT01130948  相似文献   
37.
Adenosine plays an important role in regulating intestinal motility and inflammatory processes. Previous studies in rodent models have demonstrated that adenosine metabolism and signalling are altered during chronic intestinal inflammatory diseases. However, the involvement of the adenosinergic system in the pathophysiology of gut dysmotility associated to a primary neurodysfunction is still unclear. Recently, we showed that the neurotropic Herpes simplex virus type-1 (HSV-1), orally inoculated to rodents, infects the rat enteric nervous system (ENS) and affects gut motor function without signs of systemic infection. In this study we examined whether changes in purinergic metabolism and signaling occur during permanent HSV-1 infection of rat ENS. Using isolated organ bath assays, we found that contraction mediated by adenosine engagement of A1 or A2A receptors was impaired at 1 and 6 weeks post-viral administration. Immunofluorescence studies revealed that viral infection of ENS led to a marked redistribution of adenosine receptors: A1 and A2B receptors were confined to the muscle layers whereas A2A and A3 receptors were expressed mainly in the myenteric plexus. Viral-induced ENS neurodysfunction influenced adenosine metabolism by increasing adenosine deaminase and CD73 levels in longitudinal muscle-myenteric plexus with no sign of frank inflammation. This study provides the first evidence for involvement of the adenosinergic system during HSV-1 infection of the ENS. As such, this may represent a valid therapeutic target for modulating gut contractility associated to a primary neurodysfunction.  相似文献   
38.
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable “free” iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.  相似文献   
39.
A novel ferritin was recently found in Pseudo-nitzschia multiseries (PmFTN), a marine pennate diatom that plays a major role in global primary production and carbon sequestration into the deep ocean. Crystals of recombinant PmFTN were soaked in iron and zinc solutions, and the structures were solved to 1.65–2.2-Å resolution. Three distinct iron binding sites were identified as determined from anomalous dispersion data from aerobically grown ferrous soaked crystals. Sites A and B comprise the conserved ferroxidase active site, and site C forms a pathway leading toward the central cavity where iron storage occurs. In contrast, crystal structures derived from anaerobically grown and ferrous soaked crystals revealed only one ferrous iron in the active site occupying site A. In the presence of dioxygen, zinc is observed bound to all three sites. Iron oxidation experiments using stopped-flow absorbance spectroscopy revealed an extremely rapid phase corresponding to Fe(II) oxidation at the ferroxidase site, which is saturated after adding 48 ferrous iron to apo-PmFTN (two ferrous iron per subunit), and a much slower phase due to iron core formation. These results suggest an ordered stepwise binding of ferrous iron and dioxygen to the ferroxidase site in preparation for catalysis and a partial mobilization of iron from the site following oxidation.  相似文献   
40.
We compared habitat characteristics between territories of paired and unpaired males of the long-distance migratory Common Redstart Phoenicurus phoenicurus. Nesting possibilities and reachable sparse vegetation were more abundant in territories of paired males, clearly highlighting the importance of both parameters when implementing habitat enhancements for the species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号