全文获取类型
收费全文 | 103篇 |
免费 | 23篇 |
专业分类
126篇 |
出版年
2021年 | 1篇 |
2019年 | 1篇 |
2016年 | 4篇 |
2015年 | 1篇 |
2014年 | 3篇 |
2013年 | 3篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2010年 | 2篇 |
2009年 | 8篇 |
2008年 | 5篇 |
2006年 | 3篇 |
2005年 | 1篇 |
2004年 | 3篇 |
2003年 | 4篇 |
2002年 | 5篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1999年 | 7篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1990年 | 3篇 |
1989年 | 7篇 |
1988年 | 5篇 |
1987年 | 3篇 |
1986年 | 5篇 |
1985年 | 4篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1977年 | 4篇 |
1975年 | 1篇 |
1974年 | 3篇 |
1972年 | 2篇 |
1936年 | 1篇 |
排序方式: 共有126条查询结果,搜索用时 15 毫秒
21.
Joana RF Abreu Daphne de Launay Marjolein E Sanders Aleksander M Grabiec G Marleen van de Sande Paul P Tak Kris A Reedquist 《Arthritis research & therapy》2009,11(4):R121-13
Introduction
Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases (MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to contribute to inflammation and joint destruction in RA, and abrogation of Ras family signaling is therapeutic in animal models of RA. Recently, expression and post-translational modification of Ras guanine nucleotide releasing factor 1 (RasGRF1) was found to contribute to spontaneous MMP production in melanoma cancer cells. Here, we examine the potential relationship between RasGRF1 expression and MMP production in RA, reactive arthritis, and inflammatory osteoarthritis synovial tissue and FLS. 相似文献22.
Derek W. Hood Katherine Makepeace Mary E. Deadman Richard F. Rest Pierre Thibault Adele Martin James C. Richards & E. Richard Moxon 《Molecular microbiology》1999,33(4):679-692
A survey of Haemophilus influenzae strains indicated that around one-third of capsular strains and over two-thirds of non-typeable strains included sialic acid in their lipopolysaccharides (LPS). Mutation of the CMP-Neu5Ac synthetase gene (siaB) resulted in a sialylation-deficient phenotype. Isogenic pairs, wild type and siaB mutant of two non-typeable strains were used to demonstrate that sialic acid influences resistance to the killing effect of normal human serum but has little effect on attachment to, or invasion of, cultured human epithelial cells or neutrophils. We determine for the first time the site of attachment of sialic acid in the LPS of a non-typeable strain and report that a small proportion of glycoforms include two sialic acid residues in a disaccharide unit. 相似文献
23.
Sabine Gavalda Mathieu Léger Beno?t van der Rest Alexandre Stella Fabienne Bardou Henri Montrozier Christian Chalut Odile Burlet-Schiltz Hedia Marrakchi Mamadou Daffé Anna?k Quémard 《The Journal of biological chemistry》2009,284(29):19255-19264
The last steps of the biosynthesis of mycolic acids, essential and specific lipids of Mycobacterium tuberculosis and related bacteria, are catalyzed by proteins encoded by the fadD32-pks13-accD4 cluster. Here, we produced and purified an active form of the Pks13 polyketide synthase, with a phosphopantetheinyl (P-pant) arm at both positions Ser-55 and Ser-1266 of its two acyl carrier protein (ACP) domains. Combination of liquid chromatography-tandem mass spectrometry of protein tryptic digests and radiolabeling experiments showed that, in vitro, the enzyme specifically loads long-chain 2-carboxyacyl-CoA substrates onto the P-pant arm of its C-terminal ACP domain via the acyltransferase domain. The acyl-AMPs produced by the FadD32 enzyme are specifically transferred onto the ketosynthase domain after binding to the P-pant moiety of the N-terminal ACP domain of Pks13 (N-ACPPks13). Unexpectedly, however, the latter step requires the presence of active FadD32. Thus, the couple FadD32-(N-ACPPks13) composes the initiation module of the mycolic condensation system. Pks13 ultimately condenses the two loaded fatty acyl chains to produce α-alkyl β-ketoacids, the precursors of mycolic acids. The developed in vitro assay will constitute a strategic tool for antimycobacterial drug screening.Mycolic acids, α-branched and β-hydroxylated fatty acids of unusual chain length (C30-C90), are the hallmark of the Corynebacterineae suborder that includes the causative agents of tuberculosis (Mycobacterium tuberculosis) and leprosy (Mycobacterium leprae). Members of each genus biosynthesize mycolic acids of specific chain lengths, a feature used in taxonomy. For example, Corynebacterium holds the simplest prototypes (C32-C36), called “corynomycolic acids,” which result from an enzymatic condensation between two regular size fatty acids (C16–C18). In contrast, the longest mycolates (C60-C90) are the products of condensation between a very long meromycolic chain (C40-C60) and a shorter α-chain (C22-C26) (1). These so-called “eumycolic acids” are found in mycobacteria and display various structural features present on the meromycolic chain. Eumycolic acids are major and essential components of the mycobacterial envelope where they contribute to the formation of the outer membrane (2, 3) that plays a crucial role in the permeability of the envelope. They also impact on the pathogenicity of some mycobacterial species (4).The first in vitro mycolate biosynthesis assays have been developed using Corynebacterium cell-wall extracts in the presence of a radioactive precursor (5, 6) and have brought key information about this pathway. Yet, any attempt to fractionate these extracts to identify the proteins involved has ended in failure. Later, enzymes catalyzing the formation of the meromycolic chain and the introduction of functions have been discovered with the help of novel molecular biology tools (for review, see Ref. 1), culminating with the identification of the putative operon fadD32-pks13-accD4 that encodes enzymes implicated in the mycolic condensation step in both corynebacteria and mycobacteria (see Fig. 1) (7–9). AccD4, a putative carboxyltransferase, associates at least with the AccA3 subunit to form an acyl-CoA carboxylase (ACC)3 complex that most likely activates, through a C2-carboxylation step, the extender unit to be condensed with the meromycolic chain (see Fig. 1). In Corynebacterium glutamicum, the carboxylase would metabolize a C16 substrate (8, 10), whereas in M. tuberculosis the purified complex AccA3-AccD4 was shown to carboxylate C24-C26 acyl-CoAs (11). Furthermore, FadD32, predicted to belong to a new class of long-chain acyl-AMP ligases (FAAL) (12), is most likely required for the activation of the meromycolic chain prior to the condensation reaction. At last, the cmrA gene controls the reduction of the β-keto function to yield the final mycolic motif (13) (see Fig. 1).Open in a separate windowFIGURE 1.Proposed scheme for the biosynthesis of mycolic acids. The asymmetrical carbons of the mycolic motif have a R,R configuration. R1-CO, meromycolic chain; R2, branch chain. In mycobacteria, R1-CO = C40-C60 and R2 = C20-C24; in corynebacteria, R1-CO = C16-C18 and R2 = C14-C16; X1, unknown acceptor of the mycolic α-alkyl β-ketoacyl chains; X2, unknown acceptor of the mycolic acyl chains.Although the enzymatic properties of the ACC complex have been well characterized (9, 11), those of Pks13 and FadD32 are poorly or not described. Pks13 is a type I polyketide synthase (PKS) made of a minimal module holding ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP) domains, and additional N-terminal ACP and C-terminal thioesterase domains (Fig. 1). Its ACP domains are naturally activated by the 4′-phosphopantetheinyl (P-pant) transferase PptT (14). The P-pant arm has the general function of carrying the substrate acyl chain via a thioester bond involving its terminal thiol group. In the present article we report the purification of a soluble activated form of the large Pks13 protein. For the first time, the loading mechanisms of both types of substrates on specific domains of the PKS were investigated. We describe a unique catalytic mechanism of the Pks13-FadD32 enzymatic couple and the development of an in vitro condensation assay that generates the formation of α-alkyl β-ketoacids, the precursors of mycolic acids. 相似文献
24.
Michael E. Bradley Joshua S. Rest Wen-Hsiung Li Nancy B. Schwartz 《Journal of molecular evolution》2009,68(1):1-13
The enzymes catalyzing the first two reactions in the sulfate activation pathway, ATP-sulfurylase (S) and APS-kinase (K),
are fused as ‘KS’ in animals but are fused as ‘SK’ in select bacteria and fungi. We have discovered a novel triple fusion
protein of K, S, and pyrophosphatase (P) in several protozoan genomes within the Stramenopile lineage. These triple domain
fusion proteins led us to hypothesize that pyrophosphatase enzymes and sulfate activation enzymes physically interact to impact
the thermodynamics of the sulfate activation pathway. In support of this hypothesis, we demonstrate through biochemical assays
that separately encoded KS and P proteins physically interact and that KS/P complexes activate more sulfate than KS alone.
We also conclude on the basis of phylogenetic analyses that all known KS fusions originate from a single fusion event early
in the eukaryotic lineage. Strikingly, our analyses support the same conclusion for all known SK fusions. These observations
indicate that the patchwork of fused and nonfused S and K genes observed in modern-day eukaryotes and prokaryotes are the
result of the two ancestral fusion genes evolving by an assortment of gene fissions, duplications, deletions, and horizontal
transfers in different lineages. Our integrative use of genomics, phylogenetics, and biochemistry to characterize pyrophosphatase
as a new member of the sulfate activation pathway should be effective at identifying new protein members and connections in
other molecular pathways.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Nucleotide sequence data reported here are available in the GenBank/DDBJ/EMBL databases under accession number EU352210. 相似文献
25.
Cocklin S Jost M Robertson NM Weeks SD Weber HW Young E Seal S Zhang C Mosser E Loll PJ Saunders AJ Rest RF Chaiken IM 《Journal of molecular recognition : JMR》2006,19(4):354-362
Bacillus anthracis has recently been shown to secrete a potently hemolytic/cytolytic protein that has been designated anthrolysin O (ALO). In this work, we initiated a study of this potential anthrax virulence factor in an effort to understand the membrane-binding properties of this protein. Recombinant anthrolysin O (rALO35-512) and two N-terminally truncated versions of ALO (rALO390-512 and rALO403-512) from B. anthracis were overproduced in Escherichia coli and purified to homogeneity. The role of cholesterol in the cytolytic activity of ALO was probed in cellular cholesterol depletion assays using mouse and human macrophage-like lines, and also Drosophila Schneider 2 cells. Challenging the macrophage cells with rALO35-512, but not rALO390-512 or rALO403-512, resulted in cell death by lysis, with this cytolysis being abolished by depletion of the membrane cholesterol. Drosophila cells, which contain ergosterol as their major membrane sterol, were resistant to rALO-mediated cytolysis. In order to determine the molecular mechanism of this resistance, the interaction of rALO with model membranes comprised of POPC alone, or with a variety of structurally similar sterols including ergosterol, was probed using Biacore. Both rALO35-512 and rALO403-512 demonstrated robust binding to model membranes composed of POPC and cholesterol, with amount of protein bound proportional to the cholesterol content. Ergosterol supported greatly reduced binding of both rALO35-512 and rALO403-512, whereas other sterols tested did not support binding. The rALO403-512--membrane interaction demonstrated an equilibrium dissociation constant (KD) in the low nanomolar range, whereas rALO35-512 exhibited complex kinetics likely due to the multiple events involved in pore formation. These results establish the pivotal role of cholesterol in the action of rALO. The biosensor method developed to measure ALO recognition of cholesterol in a membrane environment could be extended to provide a platform for the screening of inhibitors of other membrane-binding proteins and peptides. 相似文献
26.
27.
Raymond W. Bourdeau Enrico Malito Alexandre Chenal Brian L. Bishop Mark W. Musch Mitch L. Villereal Eugene B. Chang Elise M. Mosser Richard F. Rest Wei-Jen Tang 《The Journal of biological chemistry》2009,284(21):14645-14656
Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin
(CDC) secreted by Bacillus anthracis, the etiologic agent for
anthrax. Growing evidence suggests the involvement of ALO in anthrax
pathogenesis. Here, we show that the apical application of ALO decreases the
barrier function of human polarized epithelial cells as well as increases
intracellular calcium and the internalization of the tight junction protein
occludin. Using pharmacological agents, we also found that barrier function
disruption requires increased intracellular calcium and protein degradation.
We also report a crystal structure of the soluble state of ALO. Based on our
analytical ultracentrifugation and light scattering studies, ALO exists as a
monomer. Our ALO structure provides the molecular basis as to how ALO is
locked in a monomeric state, in contrast to other CDCs that undergo
antiparallel dimerization or higher order oligomerization in solution. ALO has
four domains and is globally similar to perfringolysin O (PFO) and
intermedilysin (ILY), yet the highly conserved undecapeptide region in domain
4 (D4) adopts a completely different conformation in all three CDCs.
Consistent with the differences within D4 and at the D2-D4 interface, we found
that ALO D4 plays a key role in affecting the barrier function of C2BBE cells,
whereas PFO domain 4 cannot substitute for this role. Novel structural
elements and unique cellular functions of ALO revealed by our studies provide
new insight into the molecular basis for the diverse nature of the CDC
family.Cholesterol-dependent cytolysins
(CDCs)4 are a family
of pore-forming toxins from many organisms, including but not limited to the
genera Archanobacterium, Bacillus, Clostridium, Listeria, and
Streptococcus. Recently, work in vertebrates has revealed that CDCs
and membrane attack complex/perforin superfamily domain-containing proteins
share a similar fold, suggesting that vertebrates use a similar mechanism for
defense against infection (1,
2). A common feature of the CDC
family is the requirement of cholesterol in the membrane to form pores
(3). In addition to
cholesterol, certain members of the family also require a cellular receptor,
such as CD59 for the toxin ILY from Streptococcus intermedius
(4). The specific mechanism by
which CDCs form pores is not completely resolved; however, what is generally
known is that ring-shaped oligomerization at the cellular membrane is followed
by large conformational changes in each unit of the oligomer, resulting in the
insertion of a β-barrel into the cellular membrane
(5). Pore formation results in
a variety of downstream signaling effects, including but not limited to the
influx of Ca2+ into the cell
(6).A good deal is known about structures of the prepore conformation of CDCs.
The crystal structures of prepore PFO, from Clostridium perfringens,
and ILY have previously been elucidated
(7,
8). Each structure shows a
characteristic four-domain architecture, in which domain 4 (D4) is involved in
membrane recognition, domain 3 (D3) is involved in β-sheet insertion, and
domain 2 (D2) is the hinge region that undergoes a large conformational change
(9-11).
Nevertheless, despite the similarities, structural differences in D4
orientation and the conformation of a highly conserved segment named the
undecapeptide region confer functional differences to PFO and ILY
(8). Noting these differences,
we decided to explore the structure and function of another member of the CDC
family, anthrolysin O (ALO).ALO is secreted by Bacillus anthracis, the etiologic agent for
anthrax. ALO is chromosomally encoded by a gene whose regulation is poorly
understood, and it is highly homologous to other members of the CDC family
(12). ALO has been shown to
have hemolytic and cytolytic activity
(13,
14). Although clinical studies
have shown that B. anthracis is weakly hemolytic
(15), anthrax bacteria do
produce biologically relevant amounts of hemolytic ALO, although the levels of
expression are under complex regulation and are dependent on the culture media
and growth conditions (12,
13,
16). At lower concentrations,
ALO can disrupt cell signaling
(13,
14). Search for a cellular
receptor of ALO has lead to the conclusion that it is a TLR4 agonist
(17). However, it is not known
that ALO binds to TLR4 directly and, if so, whether ALO also binds other
cellular receptors.In addition to ALO, B. anthracis secrete ∼400 proteins, termed
the anthrax secretome (18). Of
those, two exotoxins, edema toxin (ET) and lethal toxin (LT) have been
characterized in greatest detail. ET raises intracellular cAMP to pathologic
levels, whereas LT impairs mitogenic and stress responses by inactivating
mitogen-activating protein kinase kinase
(19,
20). The complex interplay
between these two toxins on various aspects of host cellular functions have
been demonstrated
(20-25).
ALO could also work in conjunction with other anthrax virulence factors to
modulate their cellular toxicity. For example, ALO and LF together induce
macrophage apoptosis, whereas ALO and PLC play a redundant role in a murine
inhalation anthrax model (17,
26). Interplay among anthrax
secreted factors on cells relevant to anthrax infection is just beginning to
be understood. This network of interactions is vital to the molecular basis of
how anthrax bacteria interact with the hosts during anthrax infection.Anthrax infection initiates when B. anthracis spores enter the
host through one of three routes: cutaneous, inhalational, or gastrointestinal
(GI) (27,
28). All three routes of
infection can lead to systemic infection and are ultimately lethal. Different
from inhalational anthrax, spores are ingested and germinate on or within the
epithelium of the GI tract in GI anthrax
(29). This is primarily based
on pathological observations that primary lesions of the GI tract are found in
GI anthrax, whereas no primary lesions of the lung are found in inhalational
anthrax (29). Inhalational
anthrax is a disease of choice for biological weapons because of its high
infectivity and mortality
(30). The initiation of GI
anthrax requires much higher doses of spores than inhalational anthrax, and
the molecular basis for the initiation of GI anthrax remains elusive
(31).Since the primary function of GI epithelia is to control the flux of
material into the body, disruption of this barrier can lead to movement of
bacteria into the surrounding tissue
(32). The barrier is produced
by a matrix of transmembrane and membrane-associated proteins. These cell to
cell contacts, or tight junctions, are sometimes altered during bacterial
infection to specifically disrupt the barrier function of epithelial cells.
Using a functional model for the gut epithelium, human gut epithelial Caco-2
brush border expressor (C2BBE) cells, we report that ALO decreases the barrier
function of C2BBE cells through disruption of tight junctions. We also show
that ALO disruption of barrier function is dependent on epithelial cell
polarity. We also present the crystal structure of the soluble state of ALO
and compare it with the known structures of other CDCs. In addition, we show
that ALO exists primarily as a monomer, in contrast to its closely related
homologue PFO, which exists as a dimer. Finally, we used domain swapping to
examine the structural components that confer specificity of ALO to gut
epithelial cells. 相似文献
28.
The mechanisms of chain selection and assembly of type IX collagen, a heterotrimer 1(IX)2(IX)3(IX), must differ from that of fibrillar collagens since it lacks the characteristic C-propeptide of these latter molecules. We have tested the hypothesis that the information required for this process is contained within the C-terminal triple helical disulfide-bonded region (LMW). The reassociations of the purified LMW fragments of pepsinized bovine type IX collagen were followed by the formation of disulfide-bonded multimers. Our data demonstrate that only three triple helical assemblies form readily, (1)3, (2)3, and 123. The information required for chain selection and assembly is thus, at least in part, contained in the studied fragments. Molecular stoichiometries different from the classical heterotrimer may thus also form under certain conditions. 相似文献
29.
Increased susceptibility to fungal disease accompanies adaptation to drought in Brassica rapa 下载免费PDF全文
Niamh B. O'Hara Joshua S. Rest Steven J. Franks 《Evolution; international journal of organic evolution》2016,70(1):241-248
Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable. 相似文献
30.
M E van der Rest R M Siewe T Abee E Schwarz D Oesterhelt W N Konings 《The Journal of biological chemistry》1992,267(13):8971-8976
The gene of the sodium-dependent citrate transport system from Klebsiella pneumoniae (citS) is located on plasmid pES3 (Schwarz, E., and Oesterhelt, D. (1985) EMBO J. 4, 1599-1603) and encodes a 446-amino acid protein. Transport of citrate via this citrate transport protein (CitS) is dependent on the presence of sodium ions and is inhibited by magnesium ions. The delta pH (pH gradient across the membrane) is the major driving force for uptake. It is postulated that, in analogy with the proton-dependent citrate carrier (CitH) of K. pneumoniae (van der Rest, M. E., Abee, T., Molenaar, D., and Konings, W. N. (1990) Eur. J. Biochem. 195, 71-77), only one of the protonated species of citrate is recognized by CitS and that citrate is translocated across the membrane in symport with protons and sodium ions. The hydrophobicity profile of CitS suggests that the protein is very hydrophobic and contains 12 membrane-spanning segments. These segments are not centered around a hydrophilic core as has been suggested for other transport proteins, but the protein is asymmetrical with seven transmembrane segments in front of a large hydrophilic loop and five after this loop. The amino acid sequence is highly similar to a citrate transport system of Lactococcus lactis subsp. lactis var. diacetylactis (CitP) (David, S., van der Rest, M. E., Driessen, A. J. M., Simons, G., and de Vos, W. M. (1990) J. Bacteriol. 172, 5789-5794) and less similar to CitH of K. pneumoniae. We conclude that the citS gene of K. pneumoniae encodes a sodium-dependent citrate transport system that belongs to a novel subclass of transport proteins. 相似文献