首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   76篇
  398篇
  2021年   2篇
  2019年   3篇
  2017年   2篇
  2016年   4篇
  2015年   14篇
  2014年   9篇
  2013年   14篇
  2012年   13篇
  2011年   20篇
  2010年   18篇
  2009年   19篇
  2008年   15篇
  2007年   8篇
  2006年   13篇
  2005年   11篇
  2004年   10篇
  2003年   7篇
  2002年   11篇
  2001年   13篇
  2000年   17篇
  1999年   20篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   3篇
  1992年   6篇
  1991年   10篇
  1990年   8篇
  1989年   10篇
  1988年   8篇
  1987年   4篇
  1986年   11篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1972年   2篇
  1971年   4篇
  1970年   2篇
  1969年   4篇
  1967年   2篇
  1965年   2篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
61.
62.
Studies evaluated the effects of hexanic extracts from the fruits and flowers ofClusia fluminensis and the main component of the flower extract, a purified benzophenone (clusianone), against Aedes aegypti. The treatment of larvae with the crude fruit or flower extracts from C. fluminensis did not affect the survival ofAe. aegypti (50 mg/L), however, the flower extracts significantly delayed development of Ae. aegypti. In contrast, the clusianone (50 mg/L) isolate from the flower extract, representing 54.85% of this sample composition, showed a highly significant inhibition of survival, killing 93.3% of the larvae and completely blocking development of Ae. aegypti. The results showed, for the first time, high activity of clusianone against Ae. aegypti that both killed and inhibited mosquito development. Therefore, clusianone has potential for development as a biopesticide for controlling insect vectors of tropical diseases. Future work will elucidate the mode of action of clusianone isolated from C. fluminensis.  相似文献   
63.

Introduction

To investigate whether accelerated hand bone mineral density (BMD) loss is associated with progressive joint damage in hands and feet in the first year of rheumatoid arthritis (RA) and whether it is an independent predictor of subsequent progressive total joint damage after 4 years.

Methods

In 256 recent-onset RA patients, baseline and 1-year hand BMD was measured in metacarpals 2-4 by digital X-ray radiogrammetry. Joint damage in hands and feet were scored in random order according to the Sharp-van der Heijde method at baseline and yearly up to 4 years.

Results

68% of the patients had accelerated hand BMD loss (>-0.003 g/cm2) in the first year of RA. Hand BMD loss was associated with progressive joint damage after 1 year both in hands and feet with odds ratios (OR) (95% confidence intervals [CI]) of 5.3 (1.3-20.9) and 3.1 (1.0-9.7). In univariate analysis, hand BMD loss in the first year was a predictor of subsequent progressive total joint damage after 4 years with an OR (95% CI) of 3.1 (1.3-7.6). Multivariate analysis showed that only progressive joint damage in the first year and anti-citrullinated protein antibody positivity were independent predictors of long-term progressive joint damage.

Conclusions

In the first year of RA, accelerated hand BMD loss is associated with progressive joint damage in both hands and feet. Hand BMD loss in the first year of recent-onset RA predicts subsequent progressive total joint damage, however not independent of progressive joint damage in the first year.  相似文献   
64.
The diploid yeast strain D61.M was used to study induction of mitotic chromosome loss. The test relies upon the uncovering and expression of multiple recessive markers reflecting the presumptive loss of the chromosome VII homologue carrying the corresponding wild-type alleles. The underlying 'loss event' is probably complex since the predicted centromere-linked lethal tetrad segregations for chromosome VII are not recovered. Instead, the homologue bearing the multiple recessive markers is patently homozygous. An interlaboratory study was performed in which 16 chemicals were tested under code in 2 laboratories. The results generated by the Berkeley and Darmstadt laboratories were in close agreement. Acetonitrile, ethyl acetate, 4-acetylpyridine, propionitrile and nocodazole were identified as potent inducers of mitotic chromosome loss. Acetone, dimethyl sulfoxide and 2-methoxyethyl acetate either elicited weak responses or yielded ambiguous results. Water, carbon tetrachloride, 4-fluoro-D,L-phenylalanine, amphotericin B, griseofulvin, cadmium chloride, ethyl methanesulfonate and methylmercury(II) chloride failed to induce chromosome loss. These data suggest that the system described herein represents a reliable assay for chemically induced chromosome loss in yeast.  相似文献   
65.
Production of haploid gametes relies on the specially regulated meiotic cell cycle. Analyses of the role of essential mitotic regulators in meiosis have been hampered by a shortage of appropriate alleles in metazoans. We characterized female-sterile alleles of the condensin complex component dcap-g and used them to define roles for condensin in Drosophila female meiosis. In mitosis, the condensin complex is required for sister-chromatid resolution and contributes to chromosome condensation. In meiosis, we demonstrate a role for dcap-g in disassembly of the synaptonemal complex and for proper retention of the chromosomes in a metaphase I-arrested state. The chromosomal passenger complex also is known to have mitotic roles in chromosome condensation and is required in some systems for localization of the condensin complex. We used the QA26 allele of passenger component incenp to investigate the role of the passenger complex in oocyte meiosis. Strikingly, in incenpQA26 mutants maintenance of the synaptonemal complex is disrupted. In contrast to the dcap-g mutants, the incenp mutation leads to a failure of paired homologous chromosomes to biorient, such that bivalents frequently orient toward only one pole in prometaphase and metaphase I. We show that incenp interacts genetically with ord, suggesting an important functional relationship between them in meiotic chromosome dynamics. The dcap-g and incenp mutations cause maternal effect lethality, with embryos from mutant mothers arrested in the initial mitotic divisions.  相似文献   
66.
67.
68.
Fructose 2,6-bisphosphate (F-2,6-P2) stimulated glycolysis in cell-free extracts of both normal and ras-transfected rat-1 fibroblasts. The extract of the transformed cell glycolyzed more rapidly in both the absence and the presence of F-2,6-P2 than the extract of the parent fibroblast. Addition of mitochondrial ATPase (F1) or inorganic phosphate (Pi) further stimulated lactate production in both cell lines. F-2,6-P2 stimulated the 6-phosphofructo-1-kinase (PFK-1) activity in extracts of normal and transfected cells. The activity in extracts of transformed cells tested with a fructose 6-phosphate regenerating system was considerably higher than in the extract of normal cells. Stimulation of PFK-1 activity by cAMP of both cell lines was not as pronounced as that by F-2,6-P2. In the absence of F-2,6-P2 the PFK-1 activity was strongly inhibited in the transformed cell by ATP concentrations higher than 1 mM, whereas in the normal cell only a marginal inhibition was noted even at 2 or 3 mM ATP. F-2,6-P2 reversed the inhibition of PFK-1 by ATP. Nicotinamide adenine dinucleotide (NAD) at 100 microM (in the presence of 2 mM ATP and 1 microM F-2,6-P2) stimulated PFK-1 activity only in the transformed cell, whereas nicotinamide adenine dinucleotide phosphate (NADP) inhibited PFK-1 activity (in the presence or absence of 1 microM F-2,6-P2) in extracts of both cell lines. No previous observations of stimulation or inhibition by NAD or NADP on PFK-1 activity appear to have been reported. A threefold increase in the intracellular concentration of F-2,6-P2 was observed after transfection of rat-1 fibroblast by the ras oncogene. We conclude from these data that the PFK-1 activity of ras-transfected rat-1 fibroblasts shows a greater response to certain stimulating and inhibitory regulating factors than that of the parent cell.  相似文献   
69.
The ability of related DNAs to undergo recombination decreases with increased sequence divergence. Mismatch repair has been proposed to be a key factor in preventing homeologous recombination; however, the contribution of mismatch repair is not universal. Although mismatch repair has been proposed to act by preventing strand exchange and/or inactivating multiply mismatched heteroduplexes, there has been no systematic study to determine at what step(s) in recombination mismatch repair acts in vivo. Since heteroduplex is a commonly proposed intermediate in many models of recombination, we have investigated the consequences of mismatch repair on plasmids that are multiply mismatched in heteroduplex structures that are similar to those that might arise during recombination. Plasmids containing multiply mismatched regions were transformed into wild-type and Mut(-) Eschericia coli mutants. There was only a 30-40% reduction in transformation of Mut(+) as compared to mutS and mutL strains for DNAs containing an 18% mismatched heteroduplex. The products obtained from mutS hosts differed from those obtained from Mut(+) hosts in that there were many more colonies containing mixtures of two plasmids, due to survival of both strands of the heteroduplex. There were nearly 10 times more recombinants obtained from the mutS as compared to the wild-type host. Based on these results and those from other studies with E. coli and yeast, we propose that the prevention of recombination between highly diverged DNAs may be at step earlier than heteroduplex formation.  相似文献   
70.
Naphthalene dioxygenase (NDO) fromPseudomonas sp strain NCIB 9816 is a multicomponent enzyme system which initiates naphthalene catabolism by catalyzing the addition of both atoms of molecular oxygen and two hydrogen atoms to the substrate to yield enantiomerically pure (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. NDO has a relaxed substrate specificity and catalyzes the dioxygenation of many related 2- and 3-ring aromatic and hydroaromatic (benzocyclic) compounds to their respectivecis-diols. Biotransformations with a diol-accumulating mutant, recombinant strains and purified enzyme components have established that in addition tocis-dihydroxylation, NDO also catalyzes a variety of other oxidations which include monohydroxylation, desaturation (dehydrogenation),O-andN-dealkylation and sulfoxidation reactions. In several cases, the absolute stereochemistry of the oxidation products formed by NDO are opposite to those formed by toluene dioxygenase (TDO). The reactions catalyzed by NDO and other microbial dioxygenases can yield specific hydroxylated compounds which can serve as chiral synthons in the preparation of a variety of compounds of interest to pharmaceutical and specialty chemical industries. We present here recent work documenting the diverse array of oxidation reactions catalyzed by NDO. The trends observed in the oxidation of a series of benzocyclic aromatic compounds are compared to those observed with TDO and provide the basis for prediction of regio- and stereospecificity in the oxidation of related substrates. Based on the types of reactions catalyzed and the biochemical characteristics of NDO, a mechanism for oxygen activation by NDO is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号