首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   6篇
  107篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1967年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
61.
Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca2+-ATPase activity determined. Thrombin decreased the Vmax of Ca2+-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca2+-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, whilst the simultaneous pretreatment with TPA and Ca2+-ionophore decreased Ca2+-ATPase activity. cAMP elevating agents prostaglandin E1 (PGE1) and forskolin had no influence per se on Ca2+-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca2+-ATPase system.  相似文献   
62.
To investigate the role of the cell surface-exposed regions of outer membrane protein PhoE of Escherichia coli K12 in the biogenesis of the protein, deletions were generated in two presumed cell surface-exposed regions of the protein. Intact cells expressing these mutant proteins were recognized by PhoE-specific monoclonal antibodies, which recognize conformational epitopes on the cell surface-exposed parts of the protein and/or were sensitive to a PhoE-specific phage. This shows that the polypeptides were normally incorporated into the outer membrane. When the deletions extended four amino acid residues into the seventh presumed membrane-spanning segment, the polypeptides accumulated in the periplasm. In conclusion, exposed regions of PhoE protein apparently do not play an essential role in outer membrane localization, which is consistent with the observation that these regions are hypervariable when PhoE is compared to the related proteins OmpF and OmpC. In contrast, the membrane-spanning segments are essential for the assembly process.  相似文献   
63.

Background

Airway wall remodelling is a key pathology of asthma. It includes thickening of the airway wall, hypertrophy and hyperplasia of bronchial smooth muscle cells (BSMC), as well as an increased vascularity of the sub-epithelial cell layer. BSMC are known to be the effector cells of bronchoconstriction, but they are increasingly recognized as an important source of inflammatory mediators and angiogenic factors.

Objective

To compare the angiogenic potential of BSMC of asthmatic and non-asthmatic patients and to identify asthma-specific angiogenic factors.

Methods

Primary BSMC were isolated from human airway tissue of asthmatic and non-asthmatic patients. Conditioned medium (CM) collected from BSMC isolates was tested for angiogenic capacity using the endothelial cell (EC)-spheroid in vitro angiogenesis assay. Angiogenic factors in CM were quantified using a human angiogenesis antibody array and enzyme linked immunosorbent assay.

Results

Induction of sprout outgrowth from EC-spheroids by CM of BSMC obtained from asthma patients was increased compared with CM of control BSMC (twofold, p < 0.001). Levels of ENA-78, GRO-α and IL-8 were significantly elevated in CM of BSMC from asthma patients (p < 0.05 vs. non-asthmatic patients). SB 265610, a competitive antagonist of chemokine (CXC-motif) receptor 2 (CXCR2), attenuated the increased sprout outgrowth induced by CM of asthma patient-derived BSMC.

Conclusions

BSMC isolated from asthma patients exhibit increased angiogenic potential. This effect is mediated through the CXCR2 ligands (ENA78, GRO-α and IL-8) produced by BSMC.

Implications

CXCR2 ligands may play a decisive role in directing the neovascularization in the sub-epithelial cell layers of the lungs of asthma patients. Counteracting the CXCR2-mediated neovascularization by pharmaceutical compounds may represent a novel strategy to reduce airway remodelling in asthma.  相似文献   
64.
Close relationships exist between presence of adiponectin (APN) within vascular tissue and expression of T-cadherin (T-cad) on vascular cells. APN and T-cad are also present in the circulation but here their relationships are unknown. This study investigates associations between circulating levels of high molecular weight APN (HMW-APN) and T-cad in a population comprising 66 women and 181 men with angiographically proven stable coronary artery disease (CAD). Plasma HMW-APN and T-cad were measured by ELISA and analysed for associations with baseline clinical characteristics and with each other. In multivariable analysis BMI and HDL were independently associated with HMW-APN in both genders, while diabetes and extent of coronary stenosis were independently associated with T-cad in males only. Regression analysis showed no significant association between HMW-APN and T-cad in the overall study population. However, there was a negative association between HMW-APN and T-cad (P=0.037) in a subgroup of young men (age <60 years, had no diabetes and no or 1-vessel CAD) which persisted after multivariable analysis with adjustment for all potentially influential variables (P=0.021). In the corresponding subgroup of women there was a positive association between HMW-APN and T-cad (P=0.013) which disappeared after adjustment for HDL. After exclusion of the young men, a positive association (P=0.008) between HMW-APN and T-cad was found for the remaining participants of the overall population which disappeared after adjustment for HDL and BMI. The existence of opposing correlations between circulating HMW-APN and T-cad in male and female patient populations underscores the necessity to consider gender as a confounding variable when evaluating biomarker potentials of APN and T-cad.  相似文献   
65.
66.
Cadherins are a superfamily of transmembrane proteins that mediate calcium-dependent intercellular adhesion. T-cadherin (T-cad, H-cadherin or cadherin-13) is an atypical member, lacking transmembrane and cytosolic domains and possessing a glycosylphosphatidylinositol moiety that anchors T-cadherin to the plasma membrane. This article reviews current knowledge on the biomolecular characteristics of T-cadherin, its expression and function in different tissues in health and disease and its mechanisms of signal transduction. The structural characteristics of T-cadherin protein predict that it is unlikely to function as a “true” adhesion molecule in vivo. Studies from different fields suggest that it may act rather as a signalling receptor participating in recognition of the environment and regulation of cell motility, proliferation and phenotype. Cellular expression levels of T-cadherin in various tissues frequently correlate (be it negatively or positively) with the proliferative potential of the cells. Loss- and gain-of-function studies demonstrate the ability of T-cadherin to modulate cell motility and growth. Gathering evidence suggests that the “functional predestination” of T-cadherin is in control of tissue architecture through “guiding” navigation of moving structures, segregating functional tissue compartments and “guarding” integrity of functionally connected tissue layers.  相似文献   
67.
Endoplasmic reticulum (ER) stress activated by perturbations in ER homeostasis induces the unfolded protein response (UPR) with chaperon Grp78 as the key activator of UPR signalling. The aim of UPR is to restore normal ER function; however prolonged or severe ER stress triggers apoptosis of damaged cells to ensure protection of the whole organism. Recent findings support an association of ER stress-induced apoptosis of vascular cells with cardiovascular pathologies. T-cadherin (T-cad), an atypical glycosylphosphatidylinositol-anchored member of the cadherin superfamily is upregulated in atherosclerotic lesions. Here we investigate the ability of T-cad to influence UPR signalling and endothelial cell (EC) survival during ER stress. EC were treated with a variety of ER stress-inducing compounds (thapsigargin, dithiothereitol, brefeldin A, tunicamycin, A23187 or homocysteine) and induction of ER stress validated by increases in levels of UPR signalling molecules Grp78 (glucose-regulated protein of 78 kDa), phospho-eIF2α (phosphorylated eukaryotic initiation factor 2α) and CHOP (C/EBP homologous protein). All compounds also increased T-cad mRNA and protein levels. Overexpression or silencing of T-cad in EC respectively attenuated or amplified the ER stress-induced increase in phospho-eIF2α, Grp78, CHOP and active caspases. Effects of T-cad-overexpression or T-cad-silencing on ER stress responses in EC were not affected by inclusion of either N-acetylcysteine (reactive oxygen species scavenger), LY294002 (phosphatidylinositol-3-kinase inhibitor) or SP6000125 (Jun N-terminal kinase inhibitor). The data suggest that upregulation of T-cad on EC during ER stress attenuates the activation of the proapoptotic PERK (PKR (double-stranded RNA-activated protein kinase)-like ER kinase) branch of the UPR cascade and thereby protects EC from ER stress-induced apoptosis.  相似文献   
68.
Neutrophil interaction with activated endothelial cells (EC) is required for transmigration. We examined consequences of this interaction on NETosis. Co-culture of activated EC with neutrophils induced neutrophil extracellular trap (NET) formation, which was partially dependent on production of IL-8 by activated EC. Extended neutophil/EC co-culture resulted in EC damage, which could be abrogated by inclusion of either diphenyleneiodonium to inhibit the NAPDH oxidase pathway required for NETosis, or DNAse to disrupt NETs. These findings offer new insight into mechanisms whereby NETs trigger damage to the endothelium in sepsis, small vessel vasculitis and possibly the villous trophoblast in preeclampsia.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号