首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   29篇
  国内免费   1篇
  289篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2016年   5篇
  2015年   3篇
  2014年   10篇
  2013年   12篇
  2012年   18篇
  2011年   15篇
  2010年   6篇
  2009年   6篇
  2008年   12篇
  2007年   6篇
  2006年   9篇
  2005年   20篇
  2004年   5篇
  2003年   11篇
  2002年   7篇
  2001年   8篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1992年   3篇
  1991年   7篇
  1990年   5篇
  1989年   10篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1973年   3篇
  1972年   4篇
  1969年   3篇
  1967年   3篇
  1955年   1篇
  1954年   3篇
  1953年   1篇
  1937年   1篇
  1936年   1篇
  1935年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
101.
Three vesicular glutamate transporters (VGLUT1-3) have previously been identified in the central nervous system, where they define the glutamatergic phenotype, and their expression is tightly regulated during brain development. In the present study we applied immunocytochemistry to examine the distribution of the immunoreactivity of all three VGLUTs during prenatal development of the myenteric plexus in the human small intestine. We also investigated changes in their localization in the different segments of the small intestine and in the different compartments of the developing myenteric ganglia. Immunoreactivity against all three VGLUTs was found predominantly in the ganglionic neuropil, interganglionic varicose fibers and perisomatic puncta, but cytoplasmic labeling with different intensities also occurred. Each transporter displayed a characteristic spatiotemporal expression pattern, with the transient increase or decrease of immunoreactive cell bodies, varicosities or perisomatic puncta, depending on the fetal age, the gut segment or the ganglionic compartment. Throughout gestational weeks 14-23, VGLUT1 immunoreactivity always predominated over VGLUT2 immunoreactivity, though both peaked around week 20. VGLUT3 immunoreactivity was less abundant in the developing myenteric plexus than those of VGLUT1 and VGLUT2 immunoreactivity. It was mainly expressed in the ganglionic neuropil and in the perisomatic puncta throughout the examined gestational period. Neuronal perikarya immunoreactive for VGLUT3 were restricted to between weeks 18 and 20 of gestation and exclusively to the oral part of the small intestine.  相似文献   
102.
Today's proteome is the result of innumerous gene duplication, mutagenesis, drift and selection processes. Whereas random mutagenesis introduces predominantly only gradual changes in protein function, a case can be made that an abrupt switch in function caused by single amino acid substitutions will not only considerably further evolution but might constitute a prerequisite for the appearance of novel functionalities for which no promiscuous protein intermediates can be envisaged. Recently, tetracycline repressor (TetR) variants were identified in which binding of tetracycline triggers the repressor to associate with and not to dissociate from the operator DNA as in wild-type TetR. We investigated the origin of this activity reversal by limited proteolysis, CD spectroscopy and X-ray crystallography. We show that the TetR mutant Leu17Gly switches its function via a disorder-order mechanism that differs completely from the allosteric mechanism of wild-type TetR. Our study emphasizes how single point mutations can engender unexpected leaps in protein function thus enabling the appearance of new functionalities in proteins without the need for promiscuous intermediates.  相似文献   
103.
Targeting signals direct proteins to their extra- or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization ("NtraC model") in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals.  相似文献   
104.
MKK7 is a recently discovered mitogen-activated protein kinase (MAPK) kinase that is unique in that it specifically activates only the c-JUN NH(2)-terminal protein kinase (JNK) family of enzymes. Very little is known about the biological role of MKK7. We generated inducible cell lines from the human embryonal kidney carcinoma cell line, HEK293, by stable transfection with a constitutively active mutant of MKK7, MKK7(3E), fused to green fluorescent protein (GFP), under the control of an ecdysone-inducible promoter. Treatment of cells with the synthetic ecdysone analog ponasterone A induced expression of GFP-MKK7(3E) and resulted in sustained activation of endogenous JNK, but neither of the other endogenous MAPKs, ERK or p38. Red and green fluorescing cDNA copies of mRNA extracted from cells obtained before and after induction of GFP-MKK7(3E) were hybridized to microarrays containing more than 6,000 cDNAs in eight independent experiments. By selection criteria, 23 genes were differentially regulated after 24 h of induction of GFP-MKK7(3E) and 16 after 48 h. The expression of 9 genes was consistently changed after both 24 and 48 h of induction. These changes included down-regulation of three genes, c-myc, angiopoietin-2, and glucose-regulated protein 58, and up-regulation of 6 genes, tissue factor pathway inhibitor-2, GRP78, autotaxin, PPP1R7, the DKFZ cDNA p434D0818, and 1 unknown gene. Consistent with previously described roles of several of the altered genes, MKK7(3E) inhibited cell proliferation. These data implicate active MKK7 in the negative regulation of cell proliferation and provide evidence for a new role for this kinase in the regulation of a distinct, hitherto unrecognized set of genes.  相似文献   
105.
The human cell line U937 was used as a model for differentiation along the mononuclear phagocyte lineage. Following treatment with the phorbol ester TPA, PGE2 and TxB2 secretion was induced 50-100-fold, and both PGF2 alpha and PGI2 levels became detectable in the supernatant of TPA-differentiated U937 cells. The content of the prostaglandin precursor, arachidonic acid, remained unchanged in the cellular phospholipids of undifferentiated and TPA-differentiated U937 cells. Of the enzymes involved in the availability and metabolism of arachidonic acid, phospholipase A2 activity was increased 2-fold in the membranes of TPA-differentiated U937 cells, whereas lysophosphatide acyltransferase activity remained unaltered. Cyclooxygenase activity, however, was enhanced 5-10-fold, which was due to enhanced expression of the enzyme as demonstrated by dot-blot analysis. The data suggest that the capacity to secrete prostaglandins is acquired during differentiation with TPA and results mainly from an increased cyclooxygenase activity. Despite the capacity of TPA-differentiated U937 cells to synthesize prostaglandins, none of the known monocytic stimuli further stimulated prostaglandin secretion in TPA-differentiated U937 cells. Generation of leukotrienes appears to represent a later state in the differentiation along the monocyte-macrophage lineage, since neither LTB4 nor cysteinyl-leukotrienes were detectable in the supernatants of either undifferentiated or TPA-differentiated U937 cells.  相似文献   
106.
Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8 group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine clusters carried commonly human-associated β-hemolysin converting prophages, the bovine-only isolates were devoid of such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8 isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-only CC8 group was associated with the combined loss of β-hemolysin converting prophages and gain of a new SCC probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them back to human.  相似文献   
107.
Cell migration is initiated by plasma membrane protrusions, in the form of lamellipodia and filopodia. The latter rod-like projections may exert sensory functions and are found in organisms as distant in evolution as mammals and amoeba such as Dictyostelium discoideum. In mammals, lamellipodia protrusion downstream of the small GTPase Rac1 requires a multimeric protein assembly, the WAVE-complex, which activates Arp2/3-mediated actin filament nucleation and actin network assembly. A current model of filopodia formation postulates that these structures arise from a dendritic network of lamellipodial actin filaments by selective elongation and bundling. Here, we have analyzed filopodia formation in mammalian cells abrogated in expression of essential components of the lamellipodial actin polymerization machinery. Cells depleted of the WAVE-complex component Nck-associated protein 1 (Nap1), and, in consequence, of lamellipodia, exhibited normal filopodia protrusion. Likewise, the Arp2/3-complex, which is essential for lamellipodia protrusion, is dispensable for filopodia formation. Moreover, genetic disruption of nap1 or the WAVE-orthologue suppressor of cAMP receptor (scar) in Dictyostelium was also ineffective in preventing filopodia protrusion. These data suggest that the molecular mechanism of filopodia formation is conserved throughout evolution from Dictyostelium to mammals and show that lamellipodia and filopodia formation are functionally separable.  相似文献   
108.
109.
Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous.  相似文献   
110.
Prostanoid synthesis is limited by the availability of free arachidonic acid. This polyunsaturated fatty acid is liberated by phospholipases and usually is an intermediate of the deacylation-reacylation cycle of membrane phospholipids. In rat peritoneal macrophages, ethylmercurisalicylate (merthiolate) or N-ethylmaleimide (NEM) dose dependently inhibited the incorporation of arachidonic acid into cellular phospholipids, at lower concentrations specifically into phosphatidylcholine. Furthermore, merthiolate could be shown to be a rather selective inhibitor of lysophosphatidylcholine acyltransferase. In contrast, phospholipase A2 activity was not affected over a wide dose range. Consequently, macrophages showed a large increase in prostanoid synthesis (prostaglandin E, prostacyclin and thromboxane) in the presence of both lysophosphatide acyltransferase inhibiting agents. Similar results were obtained with human platelets, in which merthiolate increased the release of thromboxane. Addition of free arachidonic acid also enhanced prostanoid synthesis in macrophages. At optimal concentrations, merthiolate had no further augmenting effect. It is concluded that the rate of prostanoid synthesis is not only controlled by phospholipase A2 activity, but rather by the activity of the reacylating enzymes, mainly lysophosphatide acyltransferase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号