首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3103篇
  免费   344篇
  国内免费   3篇
  3450篇
  2021年   26篇
  2020年   29篇
  2019年   30篇
  2018年   34篇
  2017年   36篇
  2016年   50篇
  2015年   106篇
  2014年   87篇
  2013年   112篇
  2012年   135篇
  2011年   111篇
  2010年   97篇
  2009年   63篇
  2008年   118篇
  2007年   131篇
  2006年   116篇
  2005年   110篇
  2004年   95篇
  2003年   105篇
  2002年   129篇
  2001年   106篇
  2000年   124篇
  1999年   112篇
  1998年   64篇
  1997年   36篇
  1996年   49篇
  1995年   32篇
  1994年   31篇
  1993年   46篇
  1992年   76篇
  1991年   79篇
  1990年   78篇
  1989年   57篇
  1988年   61篇
  1987年   58篇
  1986年   54篇
  1985年   39篇
  1984年   52篇
  1983年   39篇
  1982年   41篇
  1981年   35篇
  1979年   38篇
  1978年   37篇
  1976年   32篇
  1975年   47篇
  1974年   29篇
  1973年   26篇
  1972年   36篇
  1971年   25篇
  1967年   23篇
排序方式: 共有3450条查询结果,搜索用时 0 毫秒
81.
Summary The soil isolate Cellulomonas cellulans AM8 produces an extracellular l-amino acid oxidase (L-AAO) with broad substrate specificity. The strain produced up to 0.35 unit (U)/ml of the extracellular L-AAO in a simple medium containing glycerol and yeast extract. The enzyme was easily purified up to 30 U/mg protein using Phenyl-Sepharose fast flow. The purified enzyme migrated as single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of 55 kDa. On native PAGE the molecular mass was approx. 300 000 kDa, which may be due to aggregation. With the exception of glycine, proline, and threonine, all the amino acids normally constituting proteins were oxidized. The V max values from 0.7 to 35.2 U/mg for aspartic acid and lysine, respectively, and the K m values from 0.007 to 7.1 mm for cysteine and valine, respectively, were obtained at 25° C and pH 7.0 in oxygen-saturated solutions. The L-AAO had a pH optimum of 6.5–7.5. It was stable for several months at — 30° C and for some days at 35° C. Ferricyanide served as an electron acceptor with a V max of 50 U/mg and K m for 0.3 mm with phenylalanine as the substrate. Correspondence to: R. D. Schmid  相似文献   
82.
Soil microbes play key roles in ecosystems, yet the impact of their diversity on plant communities is still poorly understood. Here we demonstrate that the diversity of belowground plant-associated soil fungi promotes plant productivity and plant coexistence. Using additive partitioning of biodiversity effects developed in plant biodiversity studies, we demonstrate that this positive relationship can be driven by complementarity effects among soil fungi in one soil type and by a selection effect resulting from the fungal species that stimulated plant productivity the most in another soil type. Selection and complementarity effects among fungal species contributed to improving plant productivity up to 82% and 85%, respectively, above the average of the respective fungal species monocultures depending on the soil in which they were grown. These results also indicate that belowground diversity may act as insurance for maintaining plant productivity under differing environmental conditions.  相似文献   
83.
84.
The SlyD (sensitive to lysis D) protein of Escherichia coli is a folding enzyme with a chaperone domain and a prolyl isomerase domain of the FK506 binding protein type. Here we investigated how the two domains and their interplay are optimized for function in protein folding. Unfolded protein molecules initially form a highly dynamic complex with the chaperone domain of SlyD, and they are then transferred to the prolyl isomerase domain. The turnover number of the prolyl isomerase site is very high and guarantees that, after transfer, prolyl peptide bonds in substrate proteins are isomerized very rapidly. The Michaelis constant of catalyzed folding reflects the substrate affinity of the chaperone domain, and the turnover number is presumably determined by the rate of productive substrate transfer from the chaperone to the prolyl isomerase site and by the intrinsic propensity of the refolding protein chain to leave the active site with the native prolyl isomer. The efficiency of substrate transfer is high because dissociation from the chaperone site is very fast and because the two sites are close to each other. Protein molecules that left the prolyl isomerase site with an incorrect prolyl isomer can rapidly be re-bound by the chaperone domain because the association rate is very high as well.  相似文献   
85.
Long-chain N-acylethanolamines (NAEs) elicit a variety of biological and pharmacological effects, Anandamide (20:4n-6 NAE) and other polyunsaturated NAEs bind to the cannabinoid receptor and may thus serve as highly specific lipid mediators of cell signalling. NAEs can be formed by phospholipase D-catalyzed hydrolysis of N-acylethanolamine phospholipids or by direct condensation of ethanolamine and fatty acid, So far, most of the latter biosynthetic activity has been shown to be the reverse reaction of the NAE amidohydrolase that catalyzes NAE degradation. Thus, increasing evidence supports the hypothesis that the N-acylation-phosphodiesterase pathway yields not only saturated-monounsaturated NAEs, but polyunsaturated ones, including anandamide, as well.  相似文献   
86.
87.
There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC) is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.  相似文献   
88.
The ultrastructure of the diatomSynedra cf.ulna was examined paying special attention to the Plattenband (platelet band). This structure was first described byGeitler in 1948 on the basis of LM observations and denotes a linear array of dictyosomes along the apical axis of the cell. The present investigation confirmsGeitler's observations in all essential details and demonstrates that the dictyosomes are arranged along polarized nuclear extensions running towards the cell poles. Laterally the extensions are accompanied by a number of microtubules. In large cells the total length of the nucleus thus may reach 400 µm and more. Since only the central part of the nucleus is DNA-positive with DAPI and acridine orange, the nuclear nature of the backbone of the Plattenband cannot be recognized by LM techniques. TEM investigation of serial apical and transapical sections, however, prove unambiguously the identity with extended parts of the nucleus.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday.  相似文献   
89.
Indoleamine 2,3-dioxygenase plays a crucial role in immune tolerance and has emerged as an attractive target for cancer immunotherapy. In this study, the Passerini and Ugi multicomponent reactions have been employed to assemble a small library of imidazothiazoles that target IDO1. While the p-bromophenyl and the imidazothiazole moieties have been kept fixed, a full SAR study has been performed on the side-chain, leading to the discovery of nine compounds with sub-micromolar IC50 values in the enzyme-based assay. Compound 7d, displaying a α-acyloxyamide substructure, is the most potent compound, with an IC50 value of 0.20?µM, but a low activity in a cell-based assay. Compound 6o, containing a α-acylaminoamide moiety, shows an IC50 value of 0.81?µM in the IDO1-based assay, a full biocompatibility at 10?µM, together with a modest inhibitory activity in A375 cells. Molecular docking studies show that both 7d and 6o display a unique binding mode in the IDO1 active site, with the side-chain protruding in an additional pocket C, where a crucial hydrogen bond is formed with Lys238. Overall, this work describes an isocyanide based-multicomponent approach as a straightforward and versatile tool to rapidly access IDO1 inhibitors, providing a new direction for their future design and development.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号