首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   18篇
  396篇
  2021年   5篇
  2020年   3篇
  2018年   11篇
  2017年   4篇
  2016年   10篇
  2015年   18篇
  2014年   18篇
  2013年   24篇
  2012年   28篇
  2011年   32篇
  2010年   22篇
  2009年   13篇
  2008年   21篇
  2007年   19篇
  2006年   16篇
  2005年   22篇
  2004年   14篇
  2003年   15篇
  2002年   17篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   11篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
  1964年   1篇
  1957年   2篇
排序方式: 共有396条查询结果,搜索用时 11 毫秒
101.
Objective: Our objective was to test the effect of biliopancreatic diversion (BDP) in adiponectin multimerization. Adiponectin, the major protein secreted by adipose tissue, circulates in plasma in different isoforms. The most clinically relevant oligomers are high‐molecular weight (HMW) multimers and low‐molecular weight (LMW) trimers. Contrasting data on the effect of weight loss on adiponectin isoforms have been reported. Research Methods and Procedures: We measured total plasma adiponectin and HMW and LMW adiponectin oligomers (by Western blot analysis) before and 1 month after BPD, in 18 severely obese subjects. Results: One month after BPD, body weight decreased ~11%. Total adiponectin showed significant increase after BPD. In addition, we found a significant increase in HMW (percentage) adiponectin oligomers. We found a significant inverse correlation between HMW (percentage) and BMI before and after BPD. Homeostasis model of assessment‐insulin resistance decreased significantly after the BPD, without any significant correlation with total serum adiponectin and adiponectin oligomers. Discussion: A moderate weight loss after BPD increases total and HMW adiponectin oligomers. The significant correlation between BMI and HMW (percentage) adiponectin oligomers but not between BMI and total adiponectin might indicate a role of body fat mass in regulation of adiponectin multimerization. These data suggest that HMW oligomers represent a very sensitive parameter to short‐term BMI changes after BPD.  相似文献   
102.
103.
104.
Adding the membrane-permeant oxidant tert-butylhydroperoxide (t-BOOH) to the incubation medium, in SH-SY5Y human neuroblastoma cells, induced a marked and progressive concentration-dependent (300, 500 and 1000 microM) increase of free radical production, as evaluated by the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and of the intracellular Ca(2+) ion concentrations [Ca(2+)](i). The removal of extracellular Ca(2+) ions did not prevent t-BOOH-induced [Ca(2+)](i) elevation, whereas the intracellular Ca(2+) ion chelator 1,2-bis(o-aminophenoxy) ethane-N,N, N',N'-tetraacetic acid (BAPTA) (10 microM) was shown to be effective. Both t-BOOH-induced free radical formation and the [Ca(2+)](i) increase were completely prevented by the peroxyl scavenger alpha-tocopherol (50 microM). t-BOOH induced a time-dependent SH-SY5Y cell injury, monitored by a 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay (approximately 25% at 1 h, 50% at 3 h, 80% at 5 h) and by fluorescein diacetate (FDA)-propidium iodide (PI) fluorescent staining. The entity of t-BOOH-induced cell damage was the same both in the absence and in the presence of the intracellular Ca(2+) ion chelator BAPTA. By contrast, the peroxyl scavenger alpha-tocopherol (50 microM) completely prevented cell injury due to oxidative stress. Finally, superoxide dismutase (SOD) (500 ng/ml) caused a 30% reduction of t-BOOH-induced 2', 7'-dichlorofluorescein (DCF) fluorescence, whereas it did not modify the extent of cell injury produced by the oxidant. Collectively, the results of the present study demonstrated that in SH-SY5Y human neuroblastoma cells, the rise of [Ca(2+)](i) which occurs during oxidative stress is not involved in cell injury. Therefore, oxidative stress-induced cell death may be exclusively attributed to free radical overproduction.  相似文献   
105.
Inhibition of human immunodeficiency virus (HIV) fusion with the host cell has emerged as a viable therapeutic strategy, and rational design of inhibitors and vaccines, interfering with this process, is a prime target for antiviral research. To advance our knowledge of the structural biology of HIV fusion, we have studied the membrane-proximal region of the fusogenic envelope subunit gp41, which includes the epitope ELDKWA of the broadly neutralizing human antibody 2F5. The structural evidence available for this region is contradictory, with some studies suggesting an overall helical conformation, while the X-ray structure of the ELDKWAS peptide bound to the antibody shows it folded in a type I beta turn. We used a two-step strategy: Firstly, by a competition binding assay, we identified the proper boundaries of the domain recognized by 2F5, which we found considerably larger than the ELDKWAS hexapeptide. Secondly, we studied the structure of the resulting 13 amino acid residue peptide by collecting NMR data and analyzing them by our previously developed statistical method (NAMFIS). Our study revealed that the increase in binding affinity goes in parallel with stabilization of specific local and global conformational propensities, absent from the shorter epitope. When compounded with the available biological evidence, our structural analysis allows us to propose a specific role for the membrane-proximal region during HIV fusion, in terms of a conformational transition between the turn and the helical structure. At the same time, our hypothesis offers a structural explanation for the mechanism of neutralization of mAb 2F5.  相似文献   
106.
Human CYP3A enzymes play a pivotal role in the metabolism of many drugs, and the variability of their expression among individuals may have a strong impact on the efficacy of drug treatment. However, the individual contributions of the four CYP3A genes to total CYP3A activity remain unclear. To elucidate the role of CYP3A7, we have studied its expression in human liver and intestine. In both organs, expression of CYP3A7 mRNA was polymorphic. The recently identified CYP3A7*1C allele was a consistent marker of increased CYP3A7 expression both in liver and intestine, whereas the CYP3A7*1B allele was associated with increased CYP3A7 expression only in liver. Because of the replacement of part of the CYP3A7 promoter by the corresponding region of CYP3A4, the CYP3A7*1C allele contains the proximal ER6 motif of CYP3A4. The pregnane X and constitutively activated receptors were shown to bind with higher affinity to CYP3A4-ER6 than to CYP3A7-ER6 motifs and transactivated only promoter constructs containing CYP3A4-ER6. Furthermore, we identified mutations in CYP3A7*1C in addition to the ER6 motif that were necessary only for activation by the constitutively activated receptor. We conclude that the presence of the ER6 motif of CYP3A4 mediates the high expression of CYP3A7 in subjects carrying CYP3A7*1C.  相似文献   
107.
Oral squamous cell carcinoma (SCC) is a neoplasm characterized by a high degree of local invasion and an elevated rate of metastasis to cervical lymph nodes. It has been shown that the Hepatocyte Growth Factor/Scatter Factor Receptor Met is constitutively activated in many human tumors of epithelial origin and that it plays a critical role to confer invasive properties to neoplastic cells. Most frequently, Met activation is due to receptor overexpression, but also point mutations in the tyrosine kinase domain can lead to deregulated activation. Here we show that in all the primary tumors examined this receptor is overexpressed. Direct sequencing of Met mRNAs failed to find any activating mutation in its intracellular domain. Moreover, in cell lines derived from squamous cell carcinomas, HGF-induced activation of Met resulted in the acquisition of invasive properties. All together these data suggest that the MET oncogene is involved in progression of squamous cell carcinoma toward an invasive-metastatic behavior.  相似文献   
108.
Abstract: LAN-1 is a human neuroblastoma cell line that, in the undifferentiated state, does not respond to membrane depolarization with an elevation of [Ca2+]i, monitored by fura-2 single-cell microfluorimetry. The exposure of LAN-1 cells to the differentiating agent retinoic acid induced the appearance of [Ca2+]i elevation elicited by 55 mM K+. Maitotoxin, a putative activator of voltage-sensitive Ca2+ channels, did not evoke an elevation of [Ca2+]i in undifferentiated LAN-1 cells, but produced a marked and sustained increase in [Ca2+]i when superfused in retinoic acid-treated cells. Both high K+- and maitotoxin-induced [Ca2+]i elevation in retinoic acid-differentiated LAN-1 cells was reversed by the lanthanide Gd3+, an inorganic Ca2+-entry blocker, and by the snail toxin ω-conotoxin GVIA, which interacts with the N sub-type of voltage-sensitive Ca2+ channels. In contrast, both Bay K 8644 and nimodipine, dihydropyridines that selectively activate or block, respectively, the L-channel sub-type, were completely ineffective. The tumor promoter phorbol 12-myristate 13-acetate (100 nM), a protein kinase C activator, inhibited the elevation of [Ca2+]i due to Ca2+ influx elicited by membrane depolarization. K+-induced [Ca2+]i elevation appeared 24 h after the addition of retinoic acid and reached the highest magnitude after 72 h. Furthermore, 8 days after the removal of the differentiating agent from the culture medium, the high K+-induced increase of [Ca2+]i was still present. In conclusion, the results of the present study demonstrated that retinoic acid-induced differentiation of LAN-1 cells, which lack a high K+-evoked [Ca2+]i increase in the undifferentiated state, induces the functional expression of an ω-conotoxin GVIA-sensitive, dihydropyridine-insensitive N-type voltage-sensitive Ca2+ channel that can be activated by maitotoxin and negatively modulated by protein kinase C.  相似文献   
109.
The fluorescence anisotropy (r) of diphenylhexatriene (DPH) and of trimethylamino-diphenylhexatriene (TMA-DPH) as a function of temperature (10° to 54°C) was measured in brain microsomes of newborn rats prenatally exposed to ethanol. In this temperature range, the relationship between r and T was linear. The addition of ethanol in vitro to microsomal suspensions influenced the slope of the line of r versus T only when DPH was used as a probe and with high concentrations of the alcohol (0.3 M).The administration of ethanol (18% of total energy intake) in vivo to pregnant dams affected the slope of the lines of r versus T of the microsomes of pups, either using DPH or TMA-DPH as probes. The slope was also affected in brain microsomes obtained from dams, yet, only with TMA-DPH and in the opposite sense than in pups. We conclude that the effect of prenatal exposure to ethanol depended on metabolic alterations induced by the alcohol and not on its detergent properties for the following reasons: (a) The effects in vitro and in vivo were different and (b) in vitro effects could be obtained only with high concentrations (0.3 M), whereas in vivo effects were produced by small doses of ethanol. Besides, the effects of the administration of the alcohol in vivo were different in adult and intrauterine life.Abbreviations DPH 1,6-diphenyl hexa-1,3,5-triene - HEPES 4-(2-hydroxyethyl-1-piperazineethansulfonic) acid - SHB sucrose-HEPES-buffer (0.32 M sucrose, 2 mM HEPES, pH 7.0) - TMA-DPH 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene, p-toluensulfonate  相似文献   
110.
The effects of selective lesion of brain serotoninergic neurons on the TSH inhibiting action of d-fenfluramine were studied in male rats. Raphe lesion, which selectively decreased brain 5-HT, prevented the effect of d-fenfluramine on TSH secretion. An intraventricular injection of 5, 7-dihydroxytryptamine (150 μg in 20 μ1), in desipramine-pretreated rats, which caused a substantial damage to central serotoninergic systems without affecting catecholamine- containing neurons, also blocked the inhibitory effect of d-fenfluramine on TSH release.These findings are compatible with the hypothesis that brain 5-HT plays an inhibitory role in the control of TRH-TSH secretion in male rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号