Protein O-mannosyltransferase 1 (POMT1) and its homolog, POMT2, are responsible for the catalysis of the first step in O-mannosyl glycan synthesis. Mutations in their genes are associated with a type of congenital muscular dystrophy called Walker-Warburg syndrome. Arg64, Glu78 and Arg138 in the N-terminus region of ScPmt1p, a POMT homolog in Saccharomyces cerevisiae, are important for transferase activity. Arg138 is also essential for complex formation with ScPmt2p. Here we examined the effects of replacing the corresponding residues in human POMT1 and POMT2 with Ala on complex formation and enzymatic activity. The human POMT1 mutants lost almost all transferase activity while the POMT2 mutants retained enzymatic activity. Neither mutant lost its ability to form complexes with the native counter component. These results indicate that ScPmtps and human POMTs have different mechanisms of complex formation. They also suggest that human POMT1 and POMT2 have discrete functions since the effect of amino acid substitutions on enzymatic activity are different. 相似文献
The Streptomyces bacteriophage, φC31, uses a site-specific integrase enzyme to perform efficient recombination. The recombination system uses specific sequences to integrate exogenous DNA from the phage into a host. The sequences are known as the attP site in the phage and the attB site in the host. The system can be used as a genetic manipulation tool. In this study it has been applied to the transformation of cultured BmN cells and the construction of transgenic Bombyx mori individuals. A plasmid, pSK-attB/Pie1-EGFP/Zeo-PASV40, containing a cassette designed to express a egfp-zeocin fusion gene, was co-transfected into cultured BmN cells with a helper plasmid, pSK-Pie1/NLS-Int/NSL. Expression of the egfp-zeocin fusion gene was driven by an ie-1 promoter, downstream of a φC31 attB site. The helper plasmid encoded the φC31 integrase enzyme, which was flanked by two nuclear localization signals. Expression of the egfp-zeocin fusion gene could be observed in transformed cells. The two plasmids were also transferred into silkworm eggs to obtain transgenic silkworms. Successful integration of the fusion gene was indicated by the detection of green fluorescence, which was emitted by the silkworms. Nucleotide sequence analysis demonstrated that the attB site had been cut, to allow recombination between the attB and endogenous pseudo attP sites in the cultured silkworm cells and silkworm individuals. 相似文献
Receptor-mediated endocytosis using a β1 integrin-dependent internalization was considered as the primary mechanism for the initiation of mammalian reovirus infection. Bombyx mori cypovirus (BmCPV) is a member of Reoviridae family which mainly infects the midgut epithelium of silkworm; the cell entry of BmCPV is poorly explored. In this study, co-immunoprecipitation (Co-IP), virus overlay protein binding assay (VOPBA), and BmCPV-protein interaction on the polyvinylidene difluoride membrane (BmCPV-PI-PVDF) methods were employed to screen the interacting proteins of BmCPV, and several proteins including integrin beta and receptor for activated protein kinase C (RACK1) were identified as the candidate interacting proteins for establishing the infection of BmCPV. The infectivity of BmCPV was investigated in vivo and in vitro by RNA interference (RNAi) and antibody blocking methods, and the results showed that the infectivity of BmCPV was significantly reduced by either small interfering RNA-mediated silencing of integrin beta and RACK1 or antibody blocking of integrin beta and RACK1. The expression level of integrin beta or RACK1 is not the highest in the silkworm midgut which is a principal target tissue of BmCPV, suggesting that the molecules other than integrin beta or RACK1 might play a key role in determining the tissue tropism of BmCPV infection. The establishment of BmCPV infection depends on other factors, and these factors interacted with integrin beta and RACK1 to form receptor complex for the cell entry of BmCPV.
A novel Bombyx mori cypovirus 1 isolated from infected silkworm larvae and tentatively assigned as Bombyx mori cypovirus 1 isolate Suzhou (BmCPV-SZ). The complete nucleotide sequences of genomic segments S1-S10 from BmCPV-SZ were determined. All segments possessed a single open reading frame; however, bioinformatic evidence suggested a short overlapping coding sequence in S1. Each BmCPV-SZ segment possessed the conserved terminal sequences AGUAA and GUUAGCC at the 5' and 3' ends, respectively. The conserved A/G at the -3 position in relation to the AUG codon could be found in the BmCPV-SZ genome, and it was postulated that this conserved A/G may be the most important nucleotide for efficient translation initiation in cypoviruses (CPVs). Examination of the putative amino acid sequences encoded by BmCPV-SZ revealed some characteristic motifs. Homology searches showed that viral structural proteins VP1, VP3, and VP4 had localized homologies with proteins of Rice ragged stunt virus , a member of the genus Oryzavirus within the family Reoviridae. A phylogenetic tree based on RNA-dependent RNA polymerase sequences demonstrated that CPV is more closely related to Rice ragged stunt virus and Aedes pseudoscutellaris reovirus than to other members of Reoviridae, suggesting that they may have originated from common ancestors. 相似文献
G-protein-coupled receptors (GPCRs) play essential roles in various physiological processes, and are widely targeted by pharmaceutical drugs. Despite their importance, studying GPCRs has been problematic due to difficulties in isolating large quantities of these membrane proteins in forms that retain their ligand binding capabilities. Creating water-soluble variants of GPCRs by mutating the exterior, transmembrane residues provides a potential method to overcome these difficulties. Here we present the first study involving the computational design, expression and characterization of water-soluble variant of a human GPCR, the human mu opioid receptor (MUR), which is involved in pain and addiction. An atomistic structure of the transmembrane domain was built using comparative (homology) modeling and known GPCR structures. This structure was highly similar to the subsequently determined structure of the murine receptor and was used to computationally design 53 mutations of exterior residues in the transmembrane region, yielding a variant intended to be soluble in aqueous media. The designed variant expressed in high yield in Escherichia coli and was water soluble. The variant shared structural and functionally related features with the native human MUR, including helical secondary structure and comparable affinity for the antagonist naltrexone (Kd = 65 nM). The roles of cholesterol and disulfide bonds on the stability of the receptor variant were also investigated. This study exemplifies the potential of the computational approach to produce water-soluble variants of GPCRs amenable for structural and functionally related characterization in aqueous solution. 相似文献
Bombyxin (BBX) is an insulin-like peptide exists in the silkworm Bombyx mori. Our previous studies on the effects of inhibiting BBX-B8 expression found that BBX-B8 is important for the development of organ, reproduction and trehalose metabolism in the silkworms. In this paper, we investigated the expression profile of the BBX-B8 gene and effect of BBX-B8 overexpression on the development, body weight, silk protein synthesis and egg diapause of B. mori to further understand BBX-B8 functions. BBX-B8 gene expression could be detected in the brains, midguts, anterior silkglands, ovaries, testes, fat bodies, hemolymph, malpighian tubules and embryos by RT-PCR, however it was mainly expressed in the brain. Western blots showed that the change in BBX-B8 expression was not obvious in the brain of 1- to 4-day-old larvae of fifth instar silkworms, but expression increased substantially at 5- to 6-day-old larvae of fifth instar silkworms. Transgenic silkworms overexpressing BBX-B8 were obtained by introducing non-transposon transgenic vector pIZT-B8 containing a BBX-B8 gene driven by Orgyia pseudotsugata nucleopolyhedrovirus IE2 promoter into the genome. Development duration of the transgenic silkworms was delayed by 2.5–3.5 days. Cocoon shell weight of transgenic silkworms was reduced by 4.79 % in females and 7.44 % in males, pupal weight of transgenic silkworms was reduced 6.75 % in females and 13.83 % in males compared to non-transgenic silkworms, and 5.56–14.29 % of transgenic moths laid nondiapausing eggs. All results indicated that BBX-B8 plays an important role in the development, silk protein synthesis and egg diapause of silkworm. 相似文献