首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   18篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   13篇
  2019年   5篇
  2018年   20篇
  2017年   10篇
  2016年   14篇
  2015年   25篇
  2014年   26篇
  2013年   49篇
  2012年   46篇
  2011年   40篇
  2010年   28篇
  2009年   15篇
  2008年   28篇
  2007年   30篇
  2006年   26篇
  2005年   28篇
  2004年   31篇
  2003年   17篇
  2002年   22篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   15篇
  1996年   7篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有559条查询结果,搜索用时 31 毫秒
81.
Tuteja N  Ahmad P  Panda BB  Tuteja R 《Mutation research》2009,681(2-3):134-149
Plant cells are constantly exposed to environmental agents and endogenous processes that inflict damage to DNA and cause genotoxic stress, which can reduce plant genome stability, growth and productivity. Plants are most affected by solar UV-B radiation, which damage the DNA by inducing the formation of two main UV photoproducts such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Reactive oxygen species (ROS) are also generated extra- or intra-cellularly, which constitute yet another source of genotoxic stress. As a result of this stress, the cellular DNA-damage responses (DDR) are activated, which transiently arrest the cell cycle and allow cells to repair DNA before proceeding into mitosis. DDR requires the activation of Ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) genes, which regulate the cell cycle and transmit the damage signals to downstream effectors of cell-cycle progression. Since genomic protection and stability are fundamental to ensure and sustain plant diversity and productivity, therefore, repair of DNA damages is essential. In plants the bulky DNA lesions, CPDs and 6-4PPs, are repaired by a simple and error-free mechanism: photoreactivation, which is a light-dependent mechanism and requires CPD or 6-4PP specific photolyases. In addition to this direct repair process, the plants also have sophisticated light-independent general repair mechanisms, such as the nucleotide excision repair (NER) and base excision repair (BER). The completed plant genome sequences reveal that most of the genes involved in NER and BER are present in higher plants, which suggests that the network of in-built DNA-damage repair mechanisms is conserved. This article describes the insight underlying the DNA damage and repair pathways in plants. The comet assay to measure the DNA damage and the role of DNA repair helicases such as XPD and XPB are also covered.  相似文献   
82.
Members of all four families of ectonucleotidases, namely ectonucleoside triphosphate diphosphohydrolases (NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5′-nucleotidase and alkaline phosphatases, have been identified in the renal vasculature and/or tubular structures. In rats and mice, NTPDase1, which hydrolyses ATP through to AMP, is prominent throughout most of the renal vasculature and is also present in the thin ascending limb of Henle and medullary collecting duct. NTPDase2 and NTPDase3, which both prefer ATP over ADP as a substrate, are found in most nephron segments beyond the proximal tubule. NPPs catalyse not only the hydrolysis of ATP and ADP, but also of diadenosine polyphosphates. NPP1 has been identified in proximal and distal tubules of the mouse, while NPP3 is expressed in the rat glomerulus and pars recta, but not in more distal segments. Ecto-5′-nucleotidase, which catalyses the conversion of AMP to adenosine, is found in apical membranes of rat proximal convoluted tubule and intercalated cells of the distal nephron, as well as in the peritubular space. Finally, an alkaline phosphatase, which can theoretically catalyse the entire hydrolysis chain from nucleoside triphosphate to nucleoside, has been identified in apical membranes of rat proximal tubules; however, this enzyme exhibits relatively high K m values for adenine nucleotides. Although information on renal ectonucleotidases is still incomplete, the enzymes’ varied distribution in the vasculature and along the nephron suggests that they can profoundly influence purinoceptor activity through the hydrolysis, and generation, of agonists of the various purinoceptor subtypes. This review provides an update on renal ectonucleotidases and speculates on the functional significance of these enzymes in terms of glomerular and tubular physiology and pathophysiology.  相似文献   
83.

Background

Daily nevirapine (NVP) prophylaxis to HIV-exposed infants significantly reduces breast-milk HIV transmission. We assessed NVP-resistance in Indian infants enrolled in the “six-week extended-dose nevirapine” (SWEN) trial who received single-dose NVP (SD-NVP) or SWEN for prevention of breast-milk HIV transmission but who also acquired subtype C HIV infection during the first year of life.

Methods/Findings

Standard population sequencing and cloning for viral subpopulations present at ≥5% frequency were used to determine HIV genotypes from 94% of the 79 infected Indian infants studied. Timing of infection was defined based on when an infant''s blood sample first tested positive for HIV DNA. SWEN-exposed infants diagnosed with HIV by six weeks of age had a significantly higher prevalence of NVP-resistance than those who received SD-NVP, by both standard population sequencing (92% of 12 vs. 38% of 29; p = 0.002) and low frequency clonal analysis (92% of 12 vs. 59% of 29; p = 0.06). Likelihood of infection with NVP-resistant HIV through breast-milk among infants infected after age six weeks was substantial, but prevalence of NVP-resistance did not differ among SWEN or SD-NVP exposed infants by standard population sequencing (15% of 13 vs. 15% of 20; p = 1.00) and clonal analysis (31% of 13 vs. 40% of 20; p = 0.72). Types of NVP-resistance mutations and patterns of persistence at one year of age were similar between the two groups. NVP-resistance mutations did differ by timing of HIV infection; the Y181C variant was predominant among infants diagnosed in the first six weeks of life, compared to Y188C/H during late breast-milk transmission.

Conclusions/Significance

Use of SWEN to prevent breast-milk HIV transmission carries a high likelihood of resistance if infection occurs in the first six weeks of life. Moreover, there was a continued risk of transmission of NVP-resistant HIV through breastfeeding during the first year of life, but did not differ between SD-NVP and SWEN groups. As with SD-NVP, the value of preventing HIV infection in a large number of infants should be considered alongside the high risk of resistance associated with extended NVP prophylaxis.

Trial Registration

ClinicalTrials.gov NCT00061321  相似文献   
84.
In this paper, we report the spontaneous formation of fibrous structures consisting of assemblies of Au–Ag core-shell nanoparticles (NPs) from a solution consisting of Au–Ag core-shell NPs and l-ascorbic acid (AA). AA acted both as the reducing agent for the generation of NPs and also as the mediator for the formation of fibers. The process of fiber formation involved three steps—reduction of HAuCl4 to Au NPs by AA, subsequent formation of Au–Ag core-shell NPs after addition of AgNO3, and spontaneous formation of fibers from the mixtures in water. It took typically about 30 days to form complete fibers that are of lengths of several hundred micrometers to millimeters, although nanofibers started forming from the first day of solution preparation. The width of each of these fibers was typically about 1–4 μm with length of each segment of fiber bundle, on the order of 40 μm. Formation of fibers was also observed in absence of AgNO3. These fibers consisted of Au NPs and polymer of AA degradation products and were not electrically conducting. Also, low concentrations of AgNO3 produced fibers with low electrical conductivity. However, it was observed that increase in the amount of AgNO3 leads to the formation of fibers that were electrically conducting with conductivity values in the range of metallic conductivity. Spectroscopic and electron microscopic investigations were carried out to establish the formation of fibers. The details of fiber formation mechanism under different conditions and electrical conductivities of the fibers are discussed in the article.  相似文献   
85.
Oily sludge degradation by bacteria from Ankleshwar, India   总被引:7,自引:0,他引:7  
Three bacterial strains, Bacillus sp. SV9, Acinetobacter sp. SV4 and Pseudomonas sp., SV17 from contaminated soil in Ankleshwar, India were tested for their ability to degrade the complex mixture of petroleum hydrocarbons (such as alkanes, aromatics, resins and asphaltenes), sediments, heavy metals and water known as oily sludge. Gravimetric analysis showed that Bacillus sp. SV9 degraded approx. 59% of the oily sludge in 5 days at 30 °C whereas Acinetobacter sp. SV4 and Pseudomonas sp. SV17 degraded 37% and 35%. Capillary gas chromatographic analysis revealed that after 5 days the Bacillus strain was able to degrade oily sludge components of chain length C12–C30 and aromatics more effectively than the other two strains. Maximum drop in surface tension (from 70 to 28.4 mN/m) was accompanied by maximum biosurfactant production (6.7 g l−1) in Bacillus sp. SV9 after 72 h, these results collectively indicating that this bacterial strain has considerable potential for bioremediation of oily sludge.  相似文献   
86.
87.
88.
The enhanced generation of reactive oxygen species (ROS) under metal/metalloid stress is most common in plants, and the elevated ROS must be successfully metabolized in order to maintain plant growth, development, and productivity. Ascorbate (AsA) is a highly abundant metabolite and a water-soluble antioxidant, which besides positively influencing various aspects in plants acts also as an enigmatic component of plant defense armory. As a significant component of the ascorbate-glutathione (AsA-GSH) pathway, it performs multiple vital functions in plants including growth and development by either directly or indirectly metabolizing ROS and its products. Enzymes such as monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintain the reduced form of AsA pool besides metabolically controlling the ratio of AsA with its oxidized form (dehydroascorbate, DHA). Ascorbate peroxidase (APX, EC 1.11.1.11) utilizes the reduced AsA pool as the specific electron donor during ROS metabolism. Thus, AsA, its redox couple (AsA/DHA), and related enzymes (MDHAR, DHAR, and APX) cumulatively form an AsA redox system to efficiently protect plants particularly against potential anomalies caused by ROS and its products. Here we present a critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/metalloid stress tolerance.  相似文献   
89.
Thermal stability of antioxidant defense enzymes superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11) was studied in chloroplasts and mitochondria of leaf and inflorescence in heat adaptive weed Chenopodium album. Leaf samples were taken in March (31 °C/14 °C) and young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). Leaf and INF chloroplast and mitochondrial fractions were subjected to elevated temperatures in vitro (5–100 °C) for 30′. SOD and APX showed activity even after boiling treatment in both chloroplast and mitochondria of leaf and INF. SOD was more heat stable than APX in both chloroplasts and mitochondria in both the tissues. Chloroplast contained more heat stable SOD and APX isozymes than mitochondria in both leaf and INF. To the best of our knowledge this is the first report showing presence of thermostable APX isozymes (100 °C for 30′) in chloroplasts and mitochondria in C. album. Heat stable isozymes of SOD and APX in chloroplasts and mitochondria in leaves and inflorescence may contribute to heat tolerance in C. album.  相似文献   
90.
Oxytocin (OT) is a versatile neuropeptide that is involved in a variety of mammalian behaviors, and its role in reproductive function and behavior has been well established. The majority of pharmacological studies of the effects of OT on male sexual behavior have focused on the paraventricular nucleus (PVN), ventral tegmental area (VTA), hippocampus, and amygdala. Less attention has been given to the medial preoptic area (MPOA), a major integrative site for male sexual behavior. The present study investigated the effects of intra-MPOA administration of OT and (d(CH2)51, Tyr(Me)2, Thr4, Orn8, Tyr-NH29)-vasotocin, an OT antagonist (OTA), on copulation in the male rat. The relationship between OT receptor (OTR) binding levels in the MPOA and sexual efficiency was also explored. Microinjection of OT into the MPOA facilitated copulation in sexually experienced male rats, whereas similar injections of an OTA inhibited certain aspects of copulation but had no significant effect on locomotor activity in an open field. Contrary to expectation, sexually efficient males had lower levels of OTR binding in the rostral MPOA compared to inefficient animals. The present data suggest that OT activity in the MPOA is not necessary for the expression of male sexual behavior but is sufficient to facilitate copulatory behaviors and improve sexual efficiency in sexually experienced male rats. These data also suggest that OTR activity in the MPOA stimulates anogenital investigation, facilitates the initiation of copulation, and plays a role in the sensitization effect of the first ejaculation on subsequent ejaculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号