首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   18篇
  560篇
  2023年   2篇
  2022年   8篇
  2021年   7篇
  2020年   13篇
  2019年   5篇
  2018年   20篇
  2017年   10篇
  2016年   14篇
  2015年   25篇
  2014年   26篇
  2013年   49篇
  2012年   46篇
  2011年   40篇
  2010年   28篇
  2009年   15篇
  2008年   28篇
  2007年   30篇
  2006年   26篇
  2005年   28篇
  2004年   31篇
  2003年   17篇
  2002年   22篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   15篇
  1996年   7篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有560条查询结果,搜索用时 15 毫秒
191.
FMN hydrolases catalyze dephosphorylation of FMN to riboflavin. Although these enzymes have been described in many organisms, few had their corresponding genes cloned and their recombinant proteins biochemically characterized, and none had their physiological roles determined. We found previously that FMN hydrolase activity in pea chloroplasts is Mg(2+)-dependent, suggesting an enzyme of the haloacid dehalogenase (HAD) superfamily. In this study, a new FMN hydrolase was purified by multistep chromatography after ammonium sulfate precipitation. The molecular weight of the native protein was estimated at ~59,400, a dimer of about twice the predicted molecular weight of most HAD superfamily phosphatases. After SDS-PAGE of the partially purified material, two separate protein bands within 25-30 kDa were extracted from the gel and analyzed by nanoLC-MS/MS. Peptide sequence matching to the protein samples suggested the presence of three HAD-like hydrolases. cDNAs for sequence homologs from Arabidopsis thaliana of these proteins were expressed in Escherichia coli. Activity screening of the encoded proteins showed that the At1g79790 gene encodes an FMN hydrolase (AtcpFHy1). Plastid localization of AtcpFHy1 was confirmed using fluorescence microscopy of A. thaliana protoplasts transiently expressing the N-terminal fusion of AtcpFHy1 to enhanced green fluorescent protein. Phosphatase activity of AtcpFHy1 is FMN-specific, as assayed with 19 potential substrates. Kinetic parameters and pH and temperature optima for AtcpFHy1 were determined. A phylogenetic analysis of putative phosphatases of the HAD superfamily suggested distinct evolutionary origins for the plastid AtcpFHy1 and the cytosolic FMN hydrolase characterized previously.  相似文献   
192.
Gelsolin is a key actin cytoskeleton-modulating protein primarily regulated by calcium and phosphoinositides. In addition, low pH has also been suggested to activate gelsolin in the absence of Ca2+ ions, although no structural insight on this pathway is available except for a reported decrement in its diffusion coefficient at low pH. We also observed ∼1.6-fold decrease in the molecular mobility of recombinant gelsolin when buffer pH was lowered from 9 to 5. Analysis of the small angle x-ray scattering data collected over the same pH range indicated that the radius of gyration and maximum linear dimension of gelsolin molecules increased from 30.3 to 34.1 Å and from 100 to 125 Å, respectively. Models generated for each dataset indicated that similar to the Ca2+-induced process, low pH also promotes unwinding of this six-domain protein but only partially. It appeared that pH is able to induce extension of the G1 domain from the rest of the five domains, whereas the Ca2+-sensitive latch between G2 and G6 domains remains closed. Interestingly, increasing the free Ca2+ level to merely ∼40 nm, the partially open pH 5 shape “sprung open” to a shape seen earlier for this protein at pH 8 and 1 mm free Ca2+. Also, pH alone could induce a shape where the g3-g4 linker of gelsolin was open when we truncated the C-tail latch from this protein. Our results provide insight into how under physiological conditions, a drop in pH can fully activate the F-actin-severing shape of gelsolin with micromolar levels of Ca2+ available.  相似文献   
193.
Immortalized human cells are able to maintain their telomeres by telomerase or by a recombination-mediated DNA replication mechanism known as alternative lengthening of telomeres (ALT). We showed previously that overexpression of Sp100 protein can suppress ALT and that this was associated with sequestration of the MRE11/RAD50/NBS1 (MRN) recombination protein complex by Sp100. In the present study, we determined whether MRN proteins are required for ALT activity. ALT cells were depleted of MRN proteins by small hairpin RNA-mediated knockdown, which was maintained for up to 100 population doublings. Knockdown of NBS1 had no effect on the level of RAD50 or MRE11, but knockdown of RAD50 also depleted cells of NBS1, and knockdown of MRE11 depleted cells of all three MRN proteins. Depletion of NBS1, with or without depletion of other members of the complex, resulted in inhibition of ALT-mediated telomere maintenance, as evidenced by decreased numbers of ALT-associated promyelocytic leukemia bodies and decreased telomere length. In some clones there was an initial period of rapid shortening followed by stabilization of telomere length, whereas in others there was continuous shortening at a rate within the reported range for normal human somatic cells lacking a telomere maintenance mechanism. In contrast, depletion of NBS1 in telomerase-positive cells did not result in telomere shortening. A recent study showed that NBS1 was required for the formation of extrachromosomal telomeric circles (Compton, S. A., Choi, J. H., Cesare, A. J., Ozgur, S., and Griffith, J. D. (2007) Cancer Res. 67, 1513-1519), also a marker for ALT. We conclude that the MRN complex, and especially NBS1, is required for the ALT mechanism.  相似文献   
194.
The entire coding sequence of the bi-functional enzyme, Δ1-Pyrroline-5-carboxylate synthetase (P5CS) from Arabidopsis thaliana was reverse-transcribed, amplified and expressed under the control of CaMV 35S promoter in transgenic tobacco plants. Several lines were established and tested for the expression of P5CS. Drought and salinity were applied as osmotic stresses and proline content of the transformed plants was compared with that of non-transformed controls. Results indicate that transgenic lines express higher levels of proline and show enhanced resistance to the applied osmotic stress as compared to the non-transgenic plants.  相似文献   
195.
196.
Plant and Soil - As a major plant-derived soil organic carbon (SOC) component, lignin-derived phenolic compounds show varying biogeochemical characteristics compared to plant-derived lipid...  相似文献   
197.
198.
199.
200.
The β-thalassemias and sickle cell disorders are a major health burden in India. Diagnosis and management of these disorders both in adults and in newborns using appropriate approaches and uniform technology are important in different regions of a vast and diverse country as India. In view of a National Thalassemia Control Program to be launched soon, a need was felt for guidelines on whom to screen, cost-effective technologies that are to be used as well as for establishing prenatal diagnosis programs in regional centers. Newborn screening for sickle cell disorders is in its infancy in India and uniform approaches need to be followed. Also, included are guidelines for monitoring and managing patients who are now growing older and need comprehensive care as well as management of complications of the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号