首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8268篇
  免费   656篇
  国内免费   599篇
  9523篇
  2024年   16篇
  2023年   104篇
  2022年   266篇
  2021年   434篇
  2020年   307篇
  2019年   348篇
  2018年   370篇
  2017年   252篇
  2016年   356篇
  2015年   503篇
  2014年   571篇
  2013年   599篇
  2012年   762篇
  2011年   634篇
  2010年   385篇
  2009年   369篇
  2008年   409篇
  2007年   379篇
  2006年   348篇
  2005年   277篇
  2004年   237篇
  2003年   202篇
  2002年   175篇
  2001年   143篇
  2000年   114篇
  1999年   133篇
  1998年   79篇
  1997年   89篇
  1996年   80篇
  1995年   74篇
  1994年   85篇
  1993年   60篇
  1992年   73篇
  1991年   69篇
  1990年   60篇
  1989年   33篇
  1988年   36篇
  1987年   25篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有9523条查询结果,搜索用时 15 毫秒
81.
ABSTRACT

A critical pathogenic factor in the development of lethal liver failure is cell death induced by the accumulation of lipid reactive oxygen species. In this study, we discovered and illuminated a new mechanism that led to alcoholic liver disease via ferroptosis, an iron-dependent regulated cell death. Study in vitro showed that both necroptosis inhibitor and ferroptosis inhibitors performed significantly protective effect on alcohol-induced cell death, while apoptosis inhibitor and autophagy inhibitor had no such effect. Our data also indicated that alcohol caused the accumulation of lipid peroxides and the mRNA expression of prostaglandin-endoperoxide synthase 2, reduced the protein expression of the specific light-chain subunit of the cystine/glutamate antiporter and glutathione peroxidase 4. Importantly, ferrostatin-1 significantly ameliorated liver injury that was induced by overdosed alcohol both in vitro and in vivo. These findings highlight that targeting ferroptosis serves as a hepatoprotective strategy for alcoholic liver disease treatment.  相似文献   
82.
The GntR family regulators are widely distributed in bacteria and play critical roles in metabolic processes and bacterial pathogenicity. In this study, we describe a GntR family protein encoded by PA4132 that we named MpaR (M vfR-mediated P QS and a nthranilate r egulator) for its regulation of Pseudomonas quinolone signal (PQS) production and anthranilate metabolism in Pseudomonas aeruginosa. The deletion of mpaR increased biofilm formation and reduced pyocyanin production. RNA sequencing analysis revealed that the mRNA levels of antABC encoding enzymes for the synthesis of catechol from anthranilate, a precursor of the PQS, were most affected by mpaR deletion. Data showed that MpaR directly activates the expression of mvfR, a master regulator of pqs system, and subsequently promotes PQS production. Accordingly, deletion of mpaR activates the expression of antABC genes, and thus, increases catechol production. We also demonstrated that MpaR represses the rhl quorum-sensing (QS) system, which has been shown to control antABC activity. These results suggested that MpaR function is integrated into the QS regulatory network. Moreover, mutation of mpaR promotes bacterial survival in a mouse model of acute pneumonia infection. Collectively, this study identified a novel regulator of pqs system, which coordinately controls anthranilate metabolism and bacterial virulence in P. aeruginosa.  相似文献   
83.
84.
Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil‐expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.  相似文献   
85.
Plant Cell, Tissue and Organ Culture (PCTOC) - This report focuses on the crucial role of lipids and starch metabolism in the growth and ultrastructure of the cell wall (CW) in rice calli....  相似文献   
86.
Background: Triple-negative breast cancer (TNBC) is a refractory subtype of breast cancer, 25–30% of which have dysregulation in the PI3K/AKT pathway. The present study investigated the anticancer effect of erianin on TNBC cell line and its underlying mechanism.Methods: After treatment with erianin, MTT assay was employed to determine the MDA-MB-231 and EFM-192A cell proliferation, the nucleus morphological changes were observed by DAPI staining. The cell cycle and apoptotic proportion were detected by flow cytometry. Western blot was performed to determine the cell cycle and apoptosis-related protein expression and PI3K pathways. Finally, the antiproliferative activity of erianin was further confirmed by adding or not adding PI3K agonists SC79.Results: Erianin inhibited the proliferation of MDA-MB-231 and EFM-192A cells in a dose-dependent manner, the IC50 were 70.96 and 78.58 nM, respectively. Erianin could cause cell cycle arrest at the G2/M phase, and the expressions of p21 and p27 were up-regulated, while the expressions of CDK1 and Cyclin B1 were down-regulated. Erianin also induced apoptosis via the mitochondrial pathway, with the up-regulation of the expression of Cyto C, PARP, Bax, active form of Caspase-3, and Caspase-9. Furthermore, p-PI3K and p-Akt expression were down-regulated by erianin. After co-incubation with SC79, the cell inhibition rate of erianin was decreased, which further confirmed that the attenuated PI3K/Akt pathway was relevant to the pro-apoptotic effect of erianin.Conclusions: Erianin can inhibit the proliferation of TNBC cells and induce cell cycle arrest and apoptosis, which may ascribe to the abolish the activation of the PI3K/Akt pathway.  相似文献   
87.
Asparagus (Asparagus officinalis L) is an economically important crop, rich in nutrients, and is also conducive to solving ecological and environmental problems. Plants may acquire benefits from root-associated endophytic bacteria. However, the composition of the endophytic bacterial community associated with the roots of asparagus is poorly elucidated. In this study, the nine root samples of asparagus from three different varieties including Asparagus officinalis var. Grande (GLD), A. officinalis var. Jinglvlu3 (JL3) and A. officinalis var. Jingzilu2 (JZL) were investigated by high-throughput sequencing technology of the 16S rDNA V5-V7 hypervariable region of endophytic bacteria. A total of 16 phyla, 29 classes, 90 orders, 171 families, and 312 genera were identified. Endophytic bacteria diversity and bacteria structure was different among the three varieties and was influenced by rhizosphere soil properties and varieties. In the GLD variety, the main phyla were Proteobacteria, Actinobacteria, and Firmicutes. The main phylum in JL3 and JZL varieties was Proteobacteria. The observations showed that GLD had the highest diversity of endophytes as indicated by the Shannon index (GLD > JZL > JL3). The order of the endophytes richness was GLD > JL3 > JZL. The PCA and PCoA analysis revealed the microbial communities were different between three different asparagus varieties, and the microbial composition of GLD and JZL was more similar. This report provides an important reference for the study of endophytic microorganisms of asparagus. Supplementary informationThe online version contains supplementary material available at (10.1007/s12088-021-00926-6) contains supplementary material, which is available to authorized users.  相似文献   
88.
89.
90.
Plant extracellular vesicles (EVs) play critical roles in the cross-kingdom trafficking of molecules from hosts to interacting microbes, most notably in plant defense responses. However, the isolation of pure, intact EVs from plants remains challenging. A variety of methods have been utilized to isolate plant EVs from apoplastic washing fluid (AWF). Here, we compare published plant EV isolation methods, and provide our recommended method for the isolation and purification of plant EVs. This method includes a detailed protocol for clean AWF collection from Arabidopsis thaliana leaves, followed by EV isolation via differential centrifugation. To further separate and purify specific subclasses of EVs from heterogeneous vesicle populations, density gradient ultracentrifugation and immunoaffinity capture are then utilized. We found that immunoaffinity capture is the most precise method for specific EV subclass isolation when suitable specific EV biomarkers and their corresponding antibodies are available. Overall, this study provides a guide for the selection and optimization of EV isolation methods for desired downstream applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号