首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29538篇
  免费   3738篇
  国内免费   29篇
  2016年   270篇
  2015年   338篇
  2014年   419篇
  2013年   693篇
  2012年   683篇
  2011年   708篇
  2010年   506篇
  2009年   416篇
  2008年   605篇
  2007年   667篇
  2006年   639篇
  2005年   639篇
  2004年   641篇
  2003年   645篇
  2002年   660篇
  2001年   1875篇
  2000年   1847篇
  1999年   1441篇
  1998年   481篇
  1997年   477篇
  1996年   487篇
  1995年   429篇
  1994年   432篇
  1993年   424篇
  1992年   1075篇
  1991年   1087篇
  1990年   1068篇
  1989年   1031篇
  1988年   963篇
  1987年   904篇
  1986年   773篇
  1985年   749篇
  1984年   589篇
  1983年   512篇
  1982年   367篇
  1981年   342篇
  1980年   333篇
  1979年   565篇
  1978年   453篇
  1977年   413篇
  1976年   341篇
  1975年   455篇
  1974年   474篇
  1973年   420篇
  1972年   399篇
  1971年   312篇
  1970年   260篇
  1969年   241篇
  1968年   226篇
  1967年   205篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
221.
1. Water uptake in vivo, and water fluxes across the isolated skin were studied in salt (NaCl) acclimated toads. 2. Water uptake of acclimated toads maintained in the solution of acclimation, decreased with the environmental salinity. 3. The osmotic water permeability (Pos) of the skin increased upon salt (NaCl) acclimation, both in vivo and in vitro. 4. Pos of the skin of toads acclimated to non-permeant solutes such as sucrose (230 mmol/l) or mannitol (400 nmol/l), was greatly reduced. 5. Oxytocin (syntocinon) increased the Pos both in tap water and salt acclimated toads. In high salt (greater than 200 mmol/l NaCl) acclimated toads however, the increased Pos and water flux at larger osmotic gradients, could not be stimulated further by the hormone. 6. The adaptive nature of the selective changes in the permeability properties of the skin under salt acclimation conditions is discussed.  相似文献   
222.
The distribution and functional significance of charged groups on the outer and inner faces of the S layer from Bacillus stearothermophilus NRS 1536/3c was investigated. Chemical modification of the exposed amino or carboxyl groups was performed on whole cells, isolated S layers self-assembled in vitro, and cell wall fragments (S layer attached to the peptidoglycan-containing sacculus). Without chemical modification, S layer self-assembly products could be labeled with polycationic ferritin, while S layers on whole cells could not. Following treatment with glutaraldehyde, whole cells were uniformly labeled with polycationic ferritin. Whole cells treated with glutaraldehyde and glycine methyl ester in the presence of carbodiimide did not bind polycationic ferritin significantly above background. Treatment of cell wall fragments with amino-specific, homobifunctional cross-linkers or with carbodiimide alone rendered the S layer protein nonextractable with sodium dodecyl sulfate. After amidation of the accessible carboxyl groups, the modified, guanidine hydrochloride-extractable S layer protomers did not self-assemble into regularly structured lattices. N-Amidination with ethylacetimidate did not interfere with the self-assembly of the isolated protomers. N-Acetylation resulted in a considerable destabilization of the S layer lattice, as seen by the release of a large amount of modified protomers during the reaction. N-Succinylation led to a complete disintegration of the protein lattice. These results indicated that only the inner face of the S layer carried a net negative charge. On both faces, free amino and carboxyl groups of adjacent protomers were arranged in proximity so as to contribute by electrostatic interactions to the cohesion of the protomers in the two-dimensional array. The native charge of the protomers was required for both the in vitro self-assembly of the isolated subunits and the maintenance of the structural integrity of the S layer lattice. Among other functions, the biological significance of the S layers may be in masking the electronegative charge of the cell wall proper.  相似文献   
223.
Rat serum phosphorylcholine-binding protein (PCBP), a member of the pentraxin family of proteins, was previously shown to bind multilamellar liposomes prepared with egg phosphatidylcholine and lysophosphatidylcholine. The results suggested that the phosphorylcholine groups on the surface of liposomes play an important role in the binding process (Nagpurkar, A., Saxena, U., and Mookerjea, S. (1983) J. Biol Chem. 258, 10518-10523). A study on the binding of human plasma lipoproteins to PCBP immobilized on Sepharose has now been initiated. Very low density lipoproteins were partially bound to a Sepharose-PCBP column, and the bound fraction contained higher concentrations of apoprotein B and E. All the low density lipoproteins applied were bound to the column. In the case of high density lipoproteins, only a small fraction was retained on the column (based on protein analysis), and that bound fraction contained all the apoprotein E and Lp(a) lipoprotein. The binding of very low, low, and high density lipoproteins to Sepharose-PCBP was Ca2+-dependent, and the bound lipoproteins were quantitatively eluted by a phosphorylcholine gradient. Apoprotein B and E were also bound when whole human plasma was applied to Sepharose-PCBP. The effect of selective modification of lysine residues by acetoacetylation and of arginine residues by cyclohexanedione on the binding of low density lipoproteins to Sepharose-PCBP was examined. Modification of arginyl residues resulted in marked reduction of binding, whereas modification of lysine had no effect. Removal of sialic acid from PCBP also had no effect on the binding of low density lipoproteins to immobilized-desialylated PCBP column. The preferential binding of apoprotein B- and E-containing lipoproteins to Sepharose-PCBP indicates a possible physiological role of PCBP and other similar circulating phosphorylcholine-binding proteins of the pentraxin family in lipoprotein metabolism.  相似文献   
224.
Two enzymes were purified from actinomycin-synthesizing Streptomyces chrysomallus which could be identified as peptide synthetases involved in the biosynthesis of actinomycin. Actinomycin synthetase II activates the first two amino acids of the peptide chains of the peptide lactone antibiotic, threonine and valine (or isoleucine), as thioesters via their corresponding adenylates. It is a single polypeptide chain of Mr 225,000. Similarly, actinomycin synthetase III activates proline, glycine, and valine (the remaining three amino acids in the antibiotic) as thioesters and is a single polypeptide chain of about Mr 280,000. It also carries the methyltransferase function(s) for N-methylation of thioesterified glycine and valine. In addition, it catalyzes the formation of cyclo(sarcosyl-N-methyl-L-valine) from glycine, L-valine, and S-adenosyl-L-methionine at the expense of ATP. Although the cell-free synthesis of the peptide lactone was not as yet accomplished, the data provide evidence that together with the 4-methyl-3-hydroxyanthranilic acid-activating enzyme (now designated as actinomycin synthetase I) all amino acid-activating protein components of the actinomycin-synthesizing enzyme complex are identified.  相似文献   
225.
A soluble lectin, the core-specific lectin (CSL), is synthesized and secreted by rat hepatocytes and the rat hepatoma cell line, H-4-II-E. This lectin binds mannose and N-acetylglucosamine residues in the "core" region of Asn-linked oligosaccharides. Secretion of the CSL was found to occur over an extended period of time, greater than 4 h being required for secretion of 50% of the lectin (Brownell, M. D., Colley, K. J., and Baenziger, J. U. (1984) J. Biol. Chem. 259, 3925-3932). We have determined that following synthesis in the endoplasmic reticulum, the CSL is rapidly transported to the Golgi where it is retained for an extended period of time prior to secretion. The lectin undergoes two post-translational modifications within the Golgi: an increase from Mr 24,000 to 25,000 and a progressive decrease in pI with an accompanying increase in Mr to a final value of 26,000. The lectin is also assembled into high molecular weight complexes of 150-260 X 10(3) and acquires the ability to bind carbohydrate in the Golgi. In hepatoma cells, the 24,000-25,000 modification is completed 20 min after initiation of synthesis. Assembly of the CSL subunits into high molecular weight complexes, acquisition of carbohydrate binding activity, and the 25,000-26,000 modification occur between 20 and 80 min after initiation of synthesis. These events have slower kinetics in primary hepatocytes and this allowed us to determine that the sequence of these biosynthetic events is: the 24,000-25,000 modification, complex assembly, the 25,000-26,000 modification, and acquisition of carbohydrate binding activity. The 24,000-25,000 modification occurs prior to complex assembly. Complex assembly may occur prior to, or concomitant with, the 25,000-26,000 modification. Assembly into the oligomeric form and the 25,000-26,000 modification correlate with the attainment of carbohydrate binding activity. The kinetics of CSL modification and assembly cannot account for its retention within the Golgi. Interaction with Golgi components either through carbohydrate binding or another interaction, may act to selectively retain the lectin within the Golgi.  相似文献   
226.
The rat core-specific lectin (CSL) or mannan-binding protein is synthesized and secreted by rat hepatocytes and H-4-II-E hepatoma cells. Prior to secretion proline and lysine residues with collagen-like sequences undergo hydroxylation and subsequent glycosylation of hydroxylysine to produce glucosylgalactosylhydroxylysine. Hydroxylation and subsequent glycosylation are inhibited by alpha,alpha'-dipyridyl (Colley, K. J., and Baenziger, U. U. (1987) J. Biol. Chem. 262, 10290-10295). We have used alpha,alpha'-dipyridyl to investigate the role of hydroxylation and glycosylation on interchain disulfide bond formation, assembly of subunits into high molecular weight complexes, attainment of carbohydrate and lipid binding ability, and secretion. Formation of disulfide-bonded dimers and trimers in the endoplasmic reticulum, assembly into high molecular weight complexes in the Golgi, and attainment of carbohydrate binding activity occur in either the presence or absence of these post-translational modifications. The mature fully processed form of the CSL binds hydrophobic matrices and is secreted at a slow, but linear, rate. Inhibition of proline and lysine hydroxylation and hydroxylysine glycosylation prevents CSL secretion and attainment of binding activity for hydrophobic matrices. Secretion of the lectin, although slow, appears to be an active process and may be related to the capacity to interact with membranes and/or lipids. Other proteins known to contain collagen-like sequences such as acetylcholinesterase, pulmonary surfactant apoproteins, and C1q also interact with lipids and/or membranes. The collagen-like domains of these proteins may also play a role in promoting such interactions.  相似文献   
227.
Parvalbumin, a Ca2+-binding protein, was isolated from rat testis. This is the first demonstration of the protein in endocrine glands. By using a rat parvalbumin cDNA probe, parvalbumin mRNA was demonstrated in the testis, indicating that the protein is synthesized in this tissue and that testis parvalbumin is a product of the same gene as the one encoding for muscle parvalbumin. Parvalbumin was localized by immunohistochemical methods in the Leydig cells and in the acrosome region of maturing spermatids (stages 1-15). The expression of parvalbumin during testis development was followed. High parvalbumin protein and mRNA levels were found at stages of highest Leydig cell activity, i.e. at late fetal stages until birth and again around postnatal day 50. This suggests that parvalbumin may be involved in the production of testosterone in Leydig cells, a process which is highly dependent on calcium.  相似文献   
228.
The core-specific lectin (CSL) synthesized and secreted by rat hepatocytes and the rat hepatoma H-4-II-E shows affinity for mannose and N-acetylglucosamine residues in the "core" region of asparagine-linked oligosaccharides. The CSL undergoes two stages of post-translational modification which result in an increase in its Mr from 24,000 to 26,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We have determined that the lectin undergoes hydroxylation of proline and lysine and that the hydroxylysine is glycosylated to form glucosylgalactosylhydroxylysine (GlcGalHyLys). CSL metabolically labeled with [3H]lysine and [3H]proline contains hydroxylated forms of proline and lysine. The mature form of the lectin can also be metabolically labeled with [3H]galactose. alpha,alpha'-Dipyridyl, an inhibitor of collagen prolyl and lysyl hydroxylases, prevents the metabolic incorporation of [3H]galactose and the post-translational increases in the Mr of the CSL, indicating that both events are dependent upon hydroxylation of proline and lysine. Virtually all of the hydroxylysine present in the CSL is recovered as glucosylgalactosylhydroxylysine after alkaline hydrolysis. The post-translational modifications of the CSL place it in a select family of secreted proteins which contain collagen-like sequences, including the pulmonary surfactant proteins, complement component C1q, and the 18 S asymmetric form of acetylcholinesterase.  相似文献   
229.
Cytochrome b561 from bovine adrenal medulla chromaffin granules has been purified by fast protein liquid chromatography chromatofocusing. The purified cytochrome was reconstituted into ascorbate-loaded phosphatidylcholine vesicles. With this reconstituted system transmembrane electron transfer for extravesicular soluble dopamine beta-hydroxylase activity was demonstrated. In accordance with the model proposed by Njus et al. (Njus, D., Knoth, J., Cook, C., and Kelley, P. M. (1983) J. Biol. Chem. 258, 27-30), catalytic amounts of a redox mediator were necessary to achieve electron transfer between cytochrome and soluble dopamine beta-hydroxylase. Our observations also showed that when membranous dopamine beta-hydroxylase was reconstituted on cytochrome containing vesicles, electron transfer occurred only in the presence of a redox mediator. Since cytochrome b561 has been found in secretory vesicles associated with peptidyl glycine alpha-amidating monooxygenase, electron transfer to this enzyme was also examined. Analogous to the results obtained for dopamine beta-hydroxylase, transmembrane electron transfer to peptidyl glycine alpha-amidating monooxygenase appears to require a redox mediator between cytochrome and this monooxygenase. These observations indicate that purified cytochrome b561 is capable of providing a transmembrane supply of electrons for both monooxygenases. Since no direct protein to protein electron transfer occurs, the results support the hypothesis that the ascorbate/semidehydroascorbate redox pair serves as a mediator for these enzymes in vivo.  相似文献   
230.
The primary structure of human chromogranin A and pancreastatin   总被引:9,自引:0,他引:9  
A full-length clone encoding human chromogranin A has been isolated from a lambda gt10 cDNA library of a human pheochromocytoma. The nucleotide sequence reveals that human chromogranin A is a 439-residue protein preceded by an 18-residue signal peptide. Comparison of the protein sequence of human chromogranin A with that of bovine chromogranin A shows high conservation of the NH2-terminal and COOH-terminal domains as well as the potential dibasic cleavage sites, whereas the middle portion shows remarkable sequence variation (36%). This part of human chromogranin A contains a sequence homologous to porcine pancreastatin at residues 250-301. The sequence variation in this part of human chromogranin A compared to porcine pancreastatin is 32% and thus of the same magnitude as that between human and bovine chromogranin A. Therefore, the difference between porcine pancreastatin and the corresponding portions of bovine or human chromogranin A can be explained by species variation, suggesting that pancreastatin is derived from chromogranin A itself rather than a protein that is only similar to chromogranin A. Moreover, the pancreastatin sequence contained in human chromogranin A is flanked by sites for proteolytic processing. Together, these observations suggest that human chromogranin A may be the precursor for a human pancreastatin molecule and possibly for other, as yet unidentified, biologically active peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号