首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   17篇
  235篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   7篇
  2010年   11篇
  2009年   9篇
  2008年   4篇
  2007年   20篇
  2006年   10篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   18篇
  2001年   12篇
  2000年   5篇
  1999年   5篇
  1998年   7篇
  1997年   2篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
31.
Evidence is presented for the first time that chemolithoautotrophic ammonia oxidizers (CAO) and chemolithoautotrophic nitrite oxidizers (CNO) colonize in appreciable cell numbers the phyllosphere of spruce trees in a forest ecosystem exposed for decades to high levels of atmospheric nitrogen (The Höglwald Forest, Bavaria, Germany). The results strongly indicate that both, CAO and CNO are predominantely located inside the spruce needles, most likely within the stomatal cavity. These results are further supported by field experiments of NH3 uptake into twigs on intact spruce trees in the presence and absence of 10 Pa acetylene, an inhibitor of the ammonia monooxygenase of CAO. It is clearly demonstrated for the first time that in situ uptake of NH3 from the atmosphere into spruce needles exposed to high levels of atmospheric N is not catalyzed exclusively by the tree, but is the result of combined activities of both, the spruce trees and the chemolithoautotrophic nitrifiers colonizing the needles.  相似文献   
32.
The present study was conducted to characterize the N‐metabolism of important European tree species with different degrees of flooding tolerance. The roots of Fagus sylvatica (sensitive to flooding), Quercus robur (moderately flood tolerant) and Populus tremula × P. alba (flood tolerant) saplings were exposed to different flooding regimes and N uptake, amino acid, protein and chlorophyll concentrations as well as gas exchange were measured. The effects of these treatments on the tree species varied distinctly. In general, the N metabolism of beech was severely affected whereas less impacts were observed on oaks and almost no effects on poplars. The concentrations of amino compounds, particularly of Asp, Asn, Glu and Gln, were lower in the roots of flooded trees than in controls. By contrast, γ‐amino butyric acid concentrations increased. Root protein concentrations remained unaffected in oak and poplar but decreased in beech in response to flooding. The concentrations of pigments remained unaffected by flooding in all tree species investigated. However, photosynthesis and transpiration were severely affected in beech but much less in oak and poplar. The data obtained show a clear correlation between the different flooding tolerances of the trees investigated and the impacts of flooding on N uptake and N metabolism.  相似文献   
33.
34.
Phytopathogenic fungi infections induce plant defence responses that mediate changes in metabolic and signalling processes with severe consequences for plant growth and development. Sphaeropsis tip blight, induced by the endophytic fungus Sphaeropsis sapinea that spreads from stem tissues to the needles, is the most widespread disease of conifer forests causing dramatic economic losses. However, metabolic consequences of this disease on bark and wood tissues of its host are largely unexplored. Here, we show that diseased host pines experience tissue dehydration in both bark and wood. Increased cytokinin and declined indole‐3‐acetic acid levels were observed in both tissues and increased jasmonic acid and abscisic acid levels exclusively in the wood. Increased lignin contents at the expense of holo‐cellulose with declined structural biomass of the wood reflect cell wall fortification by S. sapinea infection. These changes are consistent with H2O2 accumulation in the wood, required for lignin polymerization. Accumulation of H2O2 was associated with more oxidized redox states of glutathione and ascorbate pools. These findings indicate that S. sapinea affects both phytohormone signalling and the antioxidative defence system in stem tissues of its pine host during the infection process.  相似文献   
35.
Abstract: To study physiological responses of mature forest trees to elevated CO2 after lifetime growth under elevated atmospheric CO2 concentrations ( p CO2), photosynthesis, Rubisco content, foliar concentrations of soluble sugars and starch, sugar concentrations in transport tissues (phloem and xylem), structural biomass, and lignin in leaves and branches were investigated in 30- to 50-year-old Quercus pubescens and Q. ilex trees grown at two naturally elevated CO2 springs in Italy. Ribulose-1,5-bisphosphate carboxylase/oxygenase content was decreased in Q. pubescens grown under elevated CO2 concentrations, but not in Q. ilex. Photosynthesis was consistently higher in Q. pubescens grown at elevated CO2 as compared with "control" sites, whereas the response in Q. ilex was less pronounced. Stomatal conductance was lower in both species leading to decreased transpiration and increased instantaneous water use efficiency in Q. pubescens. Overall mean sugar + starch concentrations of the leaves were not affected by elevated p CO2, but phloem exudates contained higher concentrations of soluble sugars. This finding suggests increased transport to sinks. Qualitative changes in major carbon-bearing compounds, such as structural biomass and lignins, were only found in bark but not in other tissues. These results support the concept that the maintenance of increased rates of photosynthesis after long-term acclimation to elevated p CO2 provides a means of optimization of water relations under arid climatic conditions but does not cause an increase in aboveground carbon sequestration per unit of tissue in Mediterranean oak species.  相似文献   
36.
37.
Leaf discs, but not detached leaves, exposed to L-methionine or S-methyl-L-cysteine emitted a volatile sulphur compound identified as methanethiol by different trapping systems and by GC. Methanethiol emission was analyzed using pumpkin (Cucurbita pepo) leaf discs. Emission was observed in darkness or light, however methanethiol emission was greately stimulated by light. Light-dependent emission started after a lag-time of 5–6 hr with an emission peak after 36–40 hr. Maximum rates obtained were in the range of 200 pmol methanethiol/min/cm2 leaf area. After a period of 42 hr about 60–80% of total methionine sulphur added was released as methanethiol. Addition of chloramphenicol did not alter the induction period nor the maximum emission rate of methanethiol in response to L-methionine. Emission was also observed in response to S-methyl-L-cysteine; however, the shorter lag-period for methanethiol formation suggests metabolism via a different enzyme system. In a cell-free system of pumpkin leaves methanethiol formation occured in response to L-methionine. Feeding experiments with L-[35S]methionine to leaf discs showed that more than 80% of methanethiol emitted was derived from the labelled methionine fed. These findings suggest that plants have the capacity to degrade L-methionine to methanethiol. Whole leaves fed L-methionine by the petiole system do not emit methanethiol, but this compound is formed and transported into the feeding solution. Thus, methanethiol is also produced by the intact leaf, but, in contrast to sulphide, is not released into the atmosphere. It is suggested that translocation of methanethiol may function as a signal for the regulation of sulphate uptake.  相似文献   
38.
Clones of Norway spruce (Picea abies L.) were grown for several years on an altitudinal gradient (1750 m, 1150 m and 800 m above sea level) to study the effects of environmental × genetic interactions on growth and foliar metabolites (protein, pigments, antioxidants). Clones at the tree line showed 4.3-fold lower growth rates and contained 60% less chlorophyll (per gram of dry matter) than those at valley level. The extent of growth reduction was clone-dependent. The mortality of the clones was low and not altitude-dependent. At valley level, but not at high altitude, needles of mature spruce trees showed lower pigment and protein concentrations than clones. In general, antioxidative systems in needles of the mature trees and young clones did not increase with increasing altitude. Needles of all trees at high altitude showed higher concentrations of dehydroascorbate than at lower altitudes, indicating higher oxidative stress. In one clone, previously identified as sensitive to acute ozone doses, this increase was significantly higher and the growth reduction was stronger than in the other genotypes. This clone also displayed a significant reduction in glutathione reductase activity at high altitude. These results suggest that induction of antioxidative systems is apparently not a general prerequisite to cope with altitude in clones whose mother plants originated from higher altitudes (about 650–1100 m above sea level, Hercycnic-Carpathian distribution area), but that the genetic constitution for maintenance of high antioxidative protection is important for stress compensation at the tree line. Received: 13 October 1998 / Accepted: 22 June 1999  相似文献   
39.
All flowering plants produce S-methylmethionine (SMM) from Met and have a separate mechanism to convert SMM back to Met. The functions of SMM and the reasons for its interconversion with Met are not known. In this study, by using the aphid stylet collection method together with mass spectral and radiolabeling analyses, we established that l-SMM is a major constituent of the phloem sap moving to wheat ears. The SMM level in the phloem ( approximately 2% of free amino acids) was 1.5-fold that of glutathione, indicating that SMM could contribute approximately half the sulfur needed for grain protein synthesis. Similarly, l-SMM was a prominently labeled product in phloem exudates obtained by EDTA treatment of detached leaves from plants of the Poaceae, Fabaceae, Asteraceae, Brassicaceae, and Cucurbitaceae that were given l-(35)S-Met. cDNA clones for the enzyme that catalyzes SMM synthesis (S-adenosylMet:Met S-methyltransferase; EC 2.1.1.12) were isolated from Wollastonia biflora, maize, and Arabidopsis. The deduced amino acid sequences revealed the expected methyltransferase domain ( approximately 300 residues at the N terminus), plus an 800-residue C-terminal region sharing significant similarity with aminotransferases and other pyridoxal 5'-phosphate-dependent enzymes. These results indicate that SMM has a previously unrecognized but often major role in sulfur transport in flowering plants and that evolution of SMM synthesis in this group involved a gene fusion event. The resulting bipartite enzyme is unlike any other known methyltransferase.  相似文献   
40.

Background

For 15+ years, a beech (Fagus sylvatica L.) dominated forest on calcareous soil was studied on two opposing slopes with contrasting microclimate in Tuttlingen, Swabian Alb, Germany. The cool-humid NE aspect of these slopes represents the majority of beech forests under current climate, the warmer and drier SW aspect represents beech forests under future climate conditions. The field studies were supplemented by investigations under controlled conditions.

Scope

The research program aimed to provide a comprehensive understanding of plant-soil-microbe water, carbon and nitrogen feedbacks in a changing climate and a holistic view of the sensitivity of beech to climate change.

Conclusions

The results of comparative and experimental studies underpin the high vulnerability of adult beech and its natural regeneration on calcareous soil to both direct climate change effects on plant physiology and indirect effects mediated by soil biogeochemical cycles. Mechanisms contributing to this vulnerability at the ecosystem and organismic level indicate a high significance of competitive interactions of beech with other vegetation components and soil microbial communities. Obvious forest management practices such as selective felling did not necessarily counteract negative effects of climate change.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号