首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   59篇
  国内免费   1篇
  594篇
  2023年   5篇
  2022年   3篇
  2021年   20篇
  2020年   7篇
  2019年   15篇
  2018年   16篇
  2017年   14篇
  2016年   18篇
  2015年   37篇
  2014年   36篇
  2013年   43篇
  2012年   56篇
  2011年   49篇
  2010年   30篇
  2009年   27篇
  2008年   46篇
  2007年   33篇
  2006年   12篇
  2005年   22篇
  2004年   20篇
  2003年   9篇
  2002年   10篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1962年   1篇
  1940年   1篇
  1910年   1篇
排序方式: 共有594条查询结果,搜索用时 15 毫秒
51.
52.
The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three constituents of the divisome, PBP3, FtsW, and FtsN, suggesting that MtgA may play a role in peptidoglycan assembly during the cell cycle in collaboration with other proteins.  相似文献   
53.
Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf) during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa). In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.  相似文献   
54.
Genomic rearrangements have been associated with the acquisition of adaptive phenotypes, allowing organisms to efficiently generate new favorable genetic combinations. The diploid genome of Candida albicans is highly plastic, displaying numerous genomic rearrangements that are often the by-product of the repair of DNA breaks. For example, DNA double-strand breaks (DSB) repair using homologous-recombination pathways are a major source of loss-of-heterozygosity (LOH), observed ubiquitously in both clinical and laboratory strains of C. albicans. Mechanisms such as break-induced replication (BIR) or mitotic crossover (MCO) can result in long tracts of LOH, spanning hundreds of kilobases until the telomere. Analysis of I-SceI-induced BIR/MCO tracts in C. albicans revealed that the homozygosis tracts can ascend several kilobases toward the centromere, displaying homozygosis from the break site toward the centromere. We sought to investigate the molecular mechanisms that could contribute to this phenotype by characterizing a series of C. albicans DNA repair mutants, including pol32-/-, msh2-/-, mph1-/-, and mus81-/-. The impact of deleting these genes on genome stability revealed functional differences between Saccharomyces cerevisiae (a model DNA repair organism) and C. albicans. In addition, we demonstrated that ascending LOH tracts toward the centromere are associated with intrinsic features of BIR and potentially involve the mismatch repair pathway which acts upon natural heterozygous positions. Overall, this mechanistic approach to study LOH deepens our limited characterization of DNA repair pathways in C. albicans and brings forth the notion that centromere proximal alleles from DNA break sites are not guarded from undergoing LOH.  相似文献   
55.
Until recently, our understanding of the evolution of human growth and development derived from studies of fossil juveniles that employed extant populations for both age determination and comparison. This circular approach has led to considerable debate about the human-like and ape-like affinities of fossil hominins. Teeth are invaluable for understanding maturation as age at death can be directly assessed from dental microstructure, and dental development has been shown to correlate with life history across primates broadly. We employ non-destructive synchrotron imaging to characterize incremental development, molar emergence, and age at death in more than 20 Australopithecus anamensis, Australopithecus africanus, Paranthropus robustus and South African early Homo juveniles. Long-period line periodicities range from at least 6–12 days (possibly 5–13 days), and do not support the hypothesis that australopiths have lower mean values than extant or fossil Homo. Crown formation times of australopith and early Homo postcanine teeth fall below or at the low end of extant human values; Paranthropus robustus dentitions have the shortest formation times. Pliocene and early Pleistocene hominins show remarkable variation, and previous reports of age at death that employ a narrow range of estimated long-period line periodicities, cuspal enamel thicknesses, or initiation ages are likely to be in error. New chronological ages for SK 62 and StW 151 are several months younger than previous histological estimates, while Sts 24 is more than one year older. Extant human standards overestimate age at death in hominins predating Homo sapiens, and should not be applied to other fossil taxa. We urge caution when inferring life history as aspects of dental development in Pliocene and early Pleistocene fossils are distinct from modern humans and African apes, and recent work has challenged the predictive power of primate-wide associations between hominoid first molar emergence and certain life history variables.  相似文献   
56.
Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the –EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same –EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with –EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development.  相似文献   
57.
The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.  相似文献   
58.
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2–deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound ‘Heatin’, containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.  相似文献   
59.
Small molecules offer unprecedented opportunities for plant research since plants respond to, metabolize, and react with a diverse range of endogenous and exogenous small molecules. Many of these small molecules become covalently attached to proteins. To display these small molecule targets in plants, we introduce a two-step labelling method for minitagged small molecules. Minitags are small chemical moieties (azide or alkyne) that are inert under biological conditions and have little influence on the membrane permeability and specificity of the small molecule. After labelling, proteomes are extracted under denaturing conditions and minitagged proteins are coupled to reporter tags through a 'click chemistry' reaction. We introduce this two-step labelling procedure in plants by studying the well-characterized targets of E-64, a small molecule cysteine protease inhibitor. In contrast to biotinylated E-64, minitagged E-64 efficiently labels vacuolar proteases in vivo . We displayed, purified and identified targets of a minitagged inhibitor that targets the proteasome and cysteine proteases in living plant cells. Chemical interference assays with inhibitors showed that MG132, a frequently used proteasome inhibitor, preferentially inhibits cysteine proteases in vivo . The two-step labelling procedure can be applied on detached leaves, cell cultures, seedlings and other living plant tissues and, when combined with photoreactive groups, can be used to identify targets of herbicides, phytohormones and reactive small molecules selected from chemical genetic screens.  相似文献   
60.
It has been shown previously that human rho degrees cells, deprived of mitochondrial DNA and consequently of functional oxidative phosphorylation, maintain a mitochondrial membrane potential, which is necessary for their growth. The goal of our study was to determine the precise origin of this membrane potential in three rho degrees cell lines originating from the human HepG2, 143B, and HeLa S3 cell lines. Residual cyanide-sensitive oxygen consumption suggests the persistence of residual mitochondrial respiratory chain activity, about 8% of that of the corresponding parental cells. The fluorescence emitted by the three rho degrees cell lines in the presence of a mitochondrial specific fluorochrome was partially reduced by a protonophore, suggesting the existence of a proton gradient. The mitochondrial membrane potential is maintained both by a residual proton gradient (up to 45 to 50% of the potential) and by other ion movements such as the glycolytic ATP(4-) to mitochondrial ADP(3-) exchange. The ANT2 gene, encoding isoform 2 of the adenine nucleotide translocator, is overexpressed in rho degrees HepG2 and 143B cells strongly dependent on glycolytic ATP synthesis, as compared to the corresponding parental cells, which present a more oxidative metabolism. In rho degrees HeLa S3 cells, originating from the HeLa S3 cell line, which already displays a glycolytic energy status, ANT2 gene expression was not higher as in parental cells. Mitochondrial oxygen consumption and ANT2 gene overexpression vary in opposite ways and this suggests that these two parameters have complementary roles in the maintenance of the mitochondrial membrane potential in rho degrees cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号