首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1524篇
  免费   160篇
  1684篇
  2023年   7篇
  2022年   11篇
  2021年   23篇
  2020年   13篇
  2019年   28篇
  2018年   19篇
  2017年   25篇
  2016年   36篇
  2015年   55篇
  2014年   57篇
  2013年   77篇
  2012年   110篇
  2011年   97篇
  2010年   82篇
  2009年   73篇
  2008年   95篇
  2007年   75篇
  2006年   73篇
  2005年   73篇
  2004年   67篇
  2003年   80篇
  2002年   67篇
  2001年   38篇
  2000年   31篇
  1999年   20篇
  1998年   18篇
  1997年   25篇
  1996年   12篇
  1995年   9篇
  1994年   13篇
  1993年   11篇
  1992年   21篇
  1991年   22篇
  1990年   19篇
  1989年   15篇
  1988年   20篇
  1987年   10篇
  1986年   16篇
  1985年   6篇
  1984年   12篇
  1983年   12篇
  1981年   8篇
  1979年   7篇
  1978年   11篇
  1976年   8篇
  1974年   11篇
  1973年   7篇
  1972年   5篇
  1971年   8篇
  1966年   6篇
排序方式: 共有1684条查询结果,搜索用时 15 毫秒
991.
Telomere maintenance can occur in the presence of telomerase or in its absence, termed alternative lengthening of telomeres (ALT). ALT adds telomere repeats using recombination-based processes and DNA repair proteins that function in homologous recombination. Our previous work reported that the RecQ-like BLM helicase is required for ALT and that it unwinds telomeric substrates in vitro. WRN is also a RecQ-like helicase that shares many biochemical functions with BLM. WRN interacts with BLM, unwinds telomeric substrates, and co-localizes to ALT-associated PML bodies (APBs), suggesting that it may also be required for ALT processes. Using long-term siRNA knockdown of WRN in three ALT cell lines, we show that some, but not all, cell lines require WRN for telomere maintenance. VA-13 cells require WRN to prevent telomere loss and for the formation of APBs; Saos-2 cells do not. A third ALT cell line, U-2 OS, requires WRN for APB formation, however WRN loss results in p53-mediated apoptosis. In the absence of WRN and p53, U-2 OS cells undergo telomere loss for an intermediate number of population doublings (50–70), at which point they maintain telomere length even with the continued loss of WRN. WRN and the tumor suppressor BRCA1 co-localize to APBs in VA-13 and U-2 OS, but not in Saos-2 cells. WRN loss in U-2 OS is associated with a loss of BRCA1 from APBs. While the loss of WRN significantly increases telomere sister chromatid exchanges (T-SCE) in these three ALT cell lines, loss of both BRCA1 and WRN does not significantly alter T-SCE. This work demonstrates that ALT cell lines use different telomerase-independent maintenance mechanisms that variably require the WRN helicase and that some cells can switch from one mechanism to another that permits telomere elongation in the absence of WRN. Our data suggest that BRCA1 localization may define these mechanisms.  相似文献   
992.

Aim

Despite recognition that realized distributions inherently underestimate species' physiological tolerances, we are yet to identify the extent of these differences within diverse taxonomic groups. The degree to which species could tolerate environmental conditions outside their observed distributions may have a significant impact on the perceived extinction risk in ecological models. More information on this potential error is required to improve our confidence in management strategies.

Location

Australia.

Time Period

1983–2012.

Major Taxa Studied

Plants.

Methods

To quantify the scale and spatial patterns of this disparity, we estimated the existing tolerance to thermal extremes of 7,124 Australian plants, more than one‐third of the native continental flora, using data from cultivated records at 128 botanical gardens and nurseries. Hierarchical Bayesian beta regression was used to assess whether factors such as realized niches, traits or phylogeny could predict the incidence or magnitude of niche truncation (underestimation of thermal tolerances), while controlling for sources of collection bias.

Results

Approximately half of the cultivated species analysed could tolerate temperature extremes beyond those experienced in their native range. Niche truncation was predictable from the breadth and extremes of their realized niches and by traits such as plant growth form. Phylogenetic relationships with niche truncation were weak and appeared more suited to predicting thermal tolerances directly.

Main conclusions

This study highlights a widespread disparity between realized and potential thermal limits that may have significant implications for species' capacity to persist in situ with a changing climate. Identifying whether thermal niche truncation is the result of biotic interactions, dispersal constraints or other environmental factors could provide significant insight into community assembly at macroecological scales. Estimating niche truncation may help to explain why certain ecological communities are more resilient to change and may potentially improve the reliability of model projections under climate change.  相似文献   
993.
Characterization of melanophore morphology by fractal dimension analysis   总被引:1,自引:0,他引:1  
Fractal or focal dimension (FD) analysis is a valuable tool to identify physiologic stimuli at the cellular and tissue levels that allows for quantification of cell perimeter complexity. The FD analysis was determined on fluorescence images of caffeine- or epinephrine-treated (or untreated control) killifish Fundulus heteroclitus (Linneaus) melanophores in culture. Cell perimeters were indicated by rhodamine-phalloidin labeling of cortical microfilaments using box-counting FD analysis. Caffeine-treated melanophores displayed dispersed melanosomes in cells with less serrated edges and reduced FD and complexity. Complexity in epinephrine-treated cells was significantly higher than the caffeine-treated cells or in the control. Cytoarchitectural variability of the cell perimeter is expected because cells change shape when cued with agents. Epinephrine-treated melanophores demonstrated aggregated melanosomes in cells with more serrated edges, significantly higher FD and thus complexity. Melanophores not treated with caffeine or epinephrine produced variable distributions of melanosomes and resulted in cells with variably serrated edges and intermediate FD with a larger SE of the regression and greater range of complexity. Dispersion of melanosomes occurs with rearrangements of the cytoskeleton to accommodate centrifugal distribution of melanosomes throughout the cell and to the periphery. The loading of melanosomes onto cortical microfilaments may provide a less complex cell contour, with the even distribution of the cytoskeleton and melanosomes. Aggregation of melanosomes occurs with rearrangements of the cytoskeleton to accommodate centripetal distribution of melanosomes. The aggregation of melanosomes may contribute to centripetal retraction of the cytoskeleton and plasma membrane. The FD analysis is, therefore, a convenient method to measure contrasting morphologic changes within stimulated cells.  相似文献   
994.
Boundary-independent polar nonsense-mediated decay   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   
995.
Cell surface carbohydrates, both in the olfactory system and elsewhere, have been proposed to play critical roles in axon guidance and targeting. Recent studies have used plant lectins to study the heterogeneous distribution of carbohydrates in the olfactory system. One lectin, Dolichos biflorus agglutinin (DBA), heterogeneously labels subsets of glomeruli. In the olfactory epithelium DBA labeled a subset of olfactory sensory neurons (OSNs) including their cilia, dendrites, and somata. OSN axons were also labeled and readily observed in the olfactory nerve and bulb. The patterns of glomerular innervation by DBA labeled (DBA(+)) axons were diverse; some glomeruli contained many labeled axons, while others contained few or no labeled axons. To characterize the heterogeneous innervation of glomeruli, we double labeled olfactory bulbs with DBA and an antibody to olfactory marker protein (OMP). OMP colocalized in most, but not all, DBA(+) axons. To determine if those axons that did not express OMP were immature, we double labeled olfactory bulbs with DBA and anti-GAP-43. GAP-43 rarely colocalized with DBA, suggesting that DBA(+) axons are not, as a population, immature. Triple labeling with all three markers revealed a small subset of DBA(+) axons which did not express either OMP or GAP-43. Electron microscopy established that DBA labels axons in the olfactory nerve and DBA-labeled axons form typical glomerular axodendritic synapses.  相似文献   
996.
997.
Signal transduction through the interleukin-1 receptor (IL-1R) pathway mediates a strong pro-inflammatory response, which contributes to a number of human diseases such as rheumatoid arthritis. Within the IL-1 family, IL-1α and IL-1β are both agonistic ligands for IL-1R, whereas IL-1 receptor antagonist (IL-1ra) is an endogenous antagonist that binds to IL-R, but does not signal. Therefore, the ideal therapeutic strategy would be blocking both IL-1α and IL-1β, but not IL-1ra. However, due to low sequence homology between the three members of the family, it has been exceedingly difficult to identify potent therapeutic agents, e.g., monoclonal antibodies (mAbs), that selectively recognize both IL-1α and IL-1β, but not IL-1ra. Currently, several anti-IL-1 therapeutic agents in clinical development either inhibit only IL-1β (i.e., anti-IL-1β mAb), or recognize all three ligands (i.e., anti-IL-1R mAb or IL-1R Trap). We have recently developed a novel dual variable domain immunoglobulin (or DVD-Ig™) technology that enables engineering the distinct specificities of two mAbs into a single functional, dual-specific, tetravalent IgG-like molecule. Based on this approach, we have developed anti-human IL-1α/β DVD-Ig™ molecules using several pairs of monoclonal antibodies with therapeutic potential, and present a case study for optimal design of a DVD-Ig™ agent for a specific target pair combination.Key words: DVD-Ig, dual variable domain immunoglobulin, interleukin-1, rheumatoid arthritis, variable domain, linker, antibody engineering, dual-specific antibody  相似文献   
998.
D. H. Greer  W. A. Laing 《Planta》1992,186(3):418-425
Kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) plants grown in an outdoor enclosure were exposed to the natural conditions of temperature and photon flux density (PFD) over the growing season (October to May). Temperatures ranged from 14 to 21° C while the mean monthly maximum PFD varied from 1000 to 1700 mol · m–2 · s–1, although the peak PFDs exceeded 2100 mol · m–2 · s–1. At intervals, the daily variation in chlorophyll fluorescence at 692 nm and 77K and the photon yield of O2 evolution in attached leaves was monitored. Similarly, the susceptibility of intact leaves to a standard photoinhibitory treatment of 20° C and a PFD of 2000 mol · m–2 · s–1 and the ability to recover at 25° C and 20 mol · m–2 · s–2 was followed through the season. On a few occasions, plants were transferred either to or from a shade enclosure to assess the suceptibility to natural photoinhibition and the capacity for recovery. There were minor though significant changes in early-morning fluorescence emission and photon yield throughout the growing season. The initial fluorescence, Fo, and the maximum fluorescence, Fm, were, however, significantly and persistently different from that in shade-grown kiwifruit leaves, indicative of chronic photoinhibition occurring in the sun leaves. In spring and autumn, kiwifruit leaves were photoinhibited through the day whereas in summer, when the PFDs were highest, no photoinhibition occurred. However, there was apparently no non-radiative energy dissipation occurring then also, indicating that the kiwifruit leaves appeared to fully utilize the available excitation energy. Nevertheless, the propensity for kiwifruit leaves to be susceptible to photoinhibition remained high throughout the season. The cause of a discrepancy between the severe photoinhibition under controlled conditions and the lack of photoinhibition under comparable, natural conditions remains uncertain. Recovery from photoinhibition, by contrast, varied over the season and was maximal in summer and declined markedly in autumn. Transfer of shade-grown plants to full sun had a catastrophic effect on the fluorescence characteristics of the leaf and photon yield. Within 3 d the variable fluorescence, Fv, and the photon yield were reduced by 80 and 40%, respectively, and this effect persisted for at least 20 d. The restoration of fluorescence characteristics on transfer of sun leaves to shade, however, was very slow and not complete within 15 d.Abbreviations and Symbols Fo, Fm, Fv initial, maximum, variable fluorescence - Fi Fv at t = 0 - F Fv at t = - PFD photon flux density - PSII photosystem II - leaf absorptance ratio - (a photon yield of O2 evolution (absorbed basis) - i a at t = 0 - a at t = We thank Miss Linda Muir and Amanda Yeates for their technical assistance in this study.  相似文献   
999.
The relative contribution of the apoplastic and cell-to-cell paths to the overall hydraulic conductivity of the outer part of rice roots (LpOPR) was estimated using a pressure perfusion technique for 30-d-old rice plants (lowland cultivar, IR64, and upland cultivar, Azucena). The technique was based on the perfusion of aerenchyma of root segments from two different zones (20-50 mm and 50-100 mm from the root apex) with aerated nutrient solution using precise pump rates. The outer part of roots (OPR) comprised an outermost rhizodermis, an exodermis, sclerenchyma fibre cells, and the innermost unmodified cortical cell layer. No root anatomical differences were observed for the two cultivars used. Development of apoplastic barriers such as Casparian bands and suberin lamellae in the exodermis were highly variable. On average, matured apoplastic barriers were observed at around 50-70 mm from the root apex. Lignification of the exodermis was completed earlier than that of sclerenchyma cells. Radial water flow across the OPR was impeded either by partially blocking off the porous apoplast with China ink particles (diameter 50 nm) or by closing water channels (aquaporins) in cell membranes with 50 micro M HgCl2. The reduction of LpOPR was relatively larger in the presence of an apoplastic blockage with ink ( approximately 30%) than in the presence of the water channel blocker ( approximately 10%) suggesting a relatively larger apoplastic water flow. The reflection coefficient of the OPR (sigmasOPR) for mannitol significantly increased during both treatments. It was larger when pores of the apoplast were closed, but absolute values were low (overall range of sigmasOPR=0.1-0.4), which also suggested a large contribution of the non-selective, apoplastic path to overall water flow. The strongest evidence in favour of a predominantly apoplastic water transport came from the comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic water permeability (PfOPR) or hydraulic conductivity (LpOPR). PfOPR was larger by a factor of 600-1400 compared with P(dOPR). The development of OPR along roots resulted in a decrease of PdOPR by a factor of three (segments taken at 20-50 and 50-100 mm from root apex, respectively). Heat-killing of living cells resulted in an increase of PdOPR for both immature (20-50 mm) and mature (50-100 mm) root segments by a factor of two. Even though both pathways (apoplast and cell-to-cell) contributed to the overall water flow, the findings indicate predominantly apoplastic water flow across the OPR, even in the presence of apoplastic barriers. Low diffusional water permeabilities may suggest a low rate of oxygen diffusion across the OPR from aerenchyma to the outer anaerobic soil medium (low PO2OPR). To date, there are no data on PO2OPR. Provisional data of radial oxygen losses (ROL) across the OPR suggest that, unlike water, rice roots efficiently retain oxygen within the aerenchyma. This ability strongly increases as roots/OPR develop.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号