首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   958篇
  免费   101篇
  国内免费   1篇
  1060篇
  2023年   3篇
  2022年   8篇
  2021年   17篇
  2020年   12篇
  2019年   14篇
  2018年   25篇
  2017年   10篇
  2016年   27篇
  2015年   52篇
  2014年   63篇
  2013年   66篇
  2012年   83篇
  2011年   69篇
  2010年   51篇
  2009年   37篇
  2008年   66篇
  2007年   67篇
  2006年   50篇
  2005年   34篇
  2004年   40篇
  2003年   41篇
  2002年   50篇
  2001年   10篇
  2000年   10篇
  1999年   8篇
  1998年   10篇
  1997年   10篇
  1996年   4篇
  1995年   5篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1990年   7篇
  1989年   8篇
  1988年   8篇
  1987年   4篇
  1984年   6篇
  1983年   8篇
  1982年   6篇
  1978年   6篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   4篇
  1970年   3篇
  1968年   2篇
  1962年   2篇
  1955年   2篇
  1954年   2篇
排序方式: 共有1060条查询结果,搜索用时 0 毫秒
141.
142.
143.
144.
145.
Computational de novo protein structure prediction is limited to small proteins of simple topology. The present work explores an approach to extend beyond the current limitations through assembling protein topologies from idealized α-helices and β-strands. The algorithm performs a Monte Carlo Metropolis simulated annealing folding simulation. It optimizes a knowledge-based potential that analyzes radius of gyration, β-strand pairing, secondary structure element (SSE) packing, amino acid pair distance, amino acid environment, contact order, secondary structure prediction agreement and loop closure. Discontinuation of the protein chain favors sampling of non-local contacts and thereby creation of complex protein topologies. The folding simulation is accelerated through exclusion of flexible loop regions further reducing the size of the conformational search space. The algorithm is benchmarked on 66 proteins with lengths between 83 and 293 amino acids. For 61 out of these proteins, the best SSE-only models obtained have an RMSD100 below 8.0 Å and recover more than 20% of the native contacts. The algorithm assembles protein topologies with up to 215 residues and a relative contact order of 0.46. The method is tailored to be used in conjunction with low-resolution or sparse experimental data sets which often provide restraints for regions of defined secondary structure.  相似文献   
146.

Background

Proteomics and metalloproteomics are rapidly developing interdisciplinary fields providing enormous amounts of data to be classified, evaluated and interpreted. Approaches offered by bioinformatics and also by biostatistical data analysis and treatment are therefore of extreme interest. Numerous methods are now available as commercial or open source tools for data processing and modelling ready to support the analysis of various datasets. The analysis of scientific data remains a big challenge, because each new task sets its specific requirements and constraints that call for the design of a targeted data pre-processing approach.

Methodology/Principal Findings

This study proposes a mathematical approach for evaluating and classifying datasets obtained by electrochemical analysis of metallothionein in rat 9 tissues (brain, heart, kidney, eye, spleen, gonad, blood, liver and femoral muscle). Tissue extracts were heated and then analysed using the differential pulse voltammetry Brdicka reaction. The voltammograms were subsequently processed. Classification models were designed making separate use of two groups of attributes, namely attributes describing local extremes, and derived attributes resulting from the level = 5 wavelet transform.

Conclusions/Significance

On the basis of our results, we were able to construct a decision tree that makes it possible to distinguish among electrochemical analysis data resulting from measurements of all the considered tissues. In other words, we found a way to classify an unknown rat tissue based on electrochemical analysis of the metallothionein in this tissue.  相似文献   
147.
Because of their unique properties, multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications. Overall, compelling evidence supports the long-term safety of ex vivo expanded human MSCs, which do not seem to transform spontaneously. However, experimental data reveal a link between MSCs and cancer, and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions. Interestingly, solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas. This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis, which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer, eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell. Unfortunately, still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs. Here, we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis.  相似文献   
148.
The harlequin ladybird beetle Harmonia axyridis has been introduced in many countries as a biological control agent, but has become an invasive species threatening the biodiversity of native ladybirds. Its invasive success has been attributed to its vigorous resistance against diverse pathogens. This study demonstrates that harmonine ((17R,9Z)-1,17-diaminooctadec-9-ene), which is present in H. axyridis haemolymph, displays broad-spectrum antimicrobial activity that includes human pathogens. Antibacterial activity is most pronounced against fast-growing mycobacteria and Mycobacterium tuberculosis, and the growth of both chloroquine-sensitive and -resistant Plasmodium falciparum strains is inhibited. Harmonine displays gametocytocidal activity, and inhibits the exflagellation of microgametocytes and zygote formation. In an Anopheles stephensi mosquito feeding model, harmonine displays transmission-blocking activity.  相似文献   
149.
The relation between irradiance, skeletal growth and net photosynthesis was studied for the scleractinian coral Galaxea fascicularis to provide experimental evidence for mediation of light-enhanced calcification through photosynthesis. The hypothesis was tested that skeletal growth and photosynthesis are linearly correlated.A long-term experiment was performed in a closed-circuit aquarium system, in which four series of nine nubbins (single polyp clones of a coral colony) of Galaxea fascicularis were exposed to four light treatments (10L:14D): 144 W T8 fluorescent lighting providing an irradiance of 68 µE/m2/s and 70, 250 and 400 W Metal Halide lighting providing an irradiance of 38 µE/m2/s, 166 µE/m2/s and 410 µE/m2/s, respectively. Growth of these nubbins was measured as buoyant weight at different time intervals in a 294 day experiment. A light-saturation curve for photosynthesis was measured in a respirometric flow cell using a 54 week Galaxea fascicularis colony grown at 60 µE/m2/s.No saturation of net photosynthesis of Galaxea fascicularis was found at the irradiances tested. The specific growth rate (µ, in day- 1) of the coral nubbins increased with irradiance. Whereas irradiance varied 11-fold (38 to 410 µE/m2/s), buoyant weight (increase after 294 days) increased 5.7 times (2243 to 12374 mg), specific growth rate (1-294 days) increased 1.6 times (0.0103 to 0.0161 day- 1), while net photosynthetic rate increased 8.9 times (0.009 µmol O2/min/cm2 to 0.077 µmol O2/min/cm2). The increase of specific growth rate with irradiance was less than expected based on the increase in net photosynthetic rate with irradiance. This discrepancy between potential energy produced in photosynthesis and energy used for skeletal growth indicates that skeletal growth is not limited by photosynthetic potential at high irradiance levels.  相似文献   
150.
Naive B cells can alter the effector function of their Ig molecule by isotype switching, thereby allowing them to secrete not only IgM, but also the switched isotypes IgG, IgA, and IgE. Different isotypes are elicited in response to specific pathogens. Similarly, dysregulated production of switched isotypes underlies the development of various diseases, such as autoimmunity and immunodeficiency. Thus, it is important to characterize mediators controlling isotype switching, as well as their contribution to the overall B cell response. Isotype switching in human naive B cells can be induced by CD40L together with IL-4, IL-10, IL-13, and/or TGF-beta. Recently, IL-21 was identified as a switch factor for IgG1 and IgG3. However, the effect of IL-21 on switching to IgA, as well as the interplay between IL-21 and other switch factors, remains unknown. We found that IL-4 and IL-21 individually induced CD40L-stimulated human naive B cells to undergo switching to IgG, with IL-4 predominantly inducing IgG1(+) cells and IL-21 inducing IgG3. Culture of naive B cells with CD40L and IL-21, but not IL-4, also yielded IgA(+) cells. Combining IL-4 and IL-21 had divergent effects on isotype switching. Specifically, while IL-4 and IL-21 synergistically increased the generation of IgG1(+) cells from CD40L-stimulated B cells, IL-4 concomitantly abolished IL-21-induced switching to IgA. Our findings demonstrate the dynamic interplay between IL-4 and IL-21 in regulating the production of IgG subclasses and IgA, and suggest temporal roles for these cytokines in humoral immune responses to specific pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号