首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2028篇
  免费   140篇
  2168篇
  2023年   18篇
  2022年   27篇
  2021年   51篇
  2020年   45篇
  2019年   36篇
  2018年   50篇
  2017年   51篇
  2016年   74篇
  2015年   116篇
  2014年   138篇
  2013年   163篇
  2012年   176篇
  2011年   150篇
  2010年   85篇
  2009年   94篇
  2008年   121篇
  2007年   101篇
  2006年   101篇
  2005年   77篇
  2004年   77篇
  2003年   78篇
  2002年   63篇
  2001年   16篇
  2000年   11篇
  1999年   24篇
  1998年   22篇
  1997年   15篇
  1996年   21篇
  1995年   21篇
  1994年   17篇
  1993年   15篇
  1992年   12篇
  1991年   7篇
  1990年   11篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   6篇
  1984年   9篇
  1982年   8篇
  1980年   3篇
  1977年   3篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1968年   2篇
  1962年   2篇
排序方式: 共有2168条查询结果,搜索用时 15 毫秒
991.
[Ir(cyclometallated 4,5-diphenyl-2-methyl-thiazole)2(5-R-1,10-phenanthroline)][PF6] (R = CH3, NO2) complexes were prepared and fully characterized, the structure of the complex with 5-CH3-1,10-phenanthroline being also determined by X-ray diffraction. The emission properties of both complexes have been investigated and their second-order nonlinear optical (NLO) response has been determined experimentally by the EFISH technique and found to be similar but slightly lower than that of related [Ir(ppy)2(5-R-1,10-phenanthroline)][PF6] (ppy = cyclometallated 2-phenylpyridine), characterized by one of the highest second-order NLO response ever reported for a metal complex. In the complexes, SOS/TDDFT calculations show that the large and negative sign of the measured hyperpolarizability is mainly due to the significant contribution of rather intense MLCT transitions involving the phenanthroline as acceptor ligand.  相似文献   
992.
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.  相似文献   
993.
Two subalpine dwarf-shrub heath communities with differing levels of soil nutrient availability were subjected to a 3-year experimental manipulation, including nutrient addition or removal of one of the two co-dominant species from each community. The main objective of our study was to assess the relative importance of interspecific competition versus nutrient limitation in relation to soil fertility. We also aimed to investigate if and to what extent current-year shoot size, leaf-based rates of net photosynthesis and foliar nutrient status accounted for the observed changes in the aboveground biomass of the shrubs. At the end of the experiment, neighbour removal increased the aboveground biomass of all shrubs, especially in the more fertile community, while fertilization did not. We concluded that: (1) competition is more effective than nutrient limitation in structuring the vegetation of subalpine heathlands; and (2) competition intensity is stronger in the more fertile community. The observed patterns of variations in aboveground biomass were not consistently related to net photosynthetic rates, size of individual shoots and foliar nutrient status. Hence, we also concluded that the growth response of dwarf shrubs to altered environmental conditions is primarily determined by developmental plasticity.  相似文献   
994.
995.
Peroxisomes and mitochondria are metabolically linked organelles, which are crucial to human health and development. The search for components involved in their dynamics and maintenance led to the interesting finding that mitochondria and peroxisomes share components of their division machinery. Recently, it became clear that this is a common strategy used by mammals, fungi and plants. Furthermore, a closer interrelationship between peroxisomes and mitochondria has been proposed, which might have an impact on functionality and disease conditions. Here, we briefly highlight the major findings, views and open questions concerning peroxisomal formation, division, and interrelationship with mitochondria. Presented at the 50th Anniversary Symposium of the Society for Histochemistry, Interlaken, Switzerland, October 1–4, 2008.  相似文献   
996.
Synthesis of amylase by Aspergillus niger strain UO-01 under solid-state fermentation with sugarcane bagasse was optimized by using response surface methodology and empirical modelling. The process parameters tested were particle size of sugarcane bagasse, incubation temperature and pH, moisture level of solid support material and the concentrations of inoculum, total sugars, nitrogen and phosphorous. The optimum conditions for high amylase production (457.82 EU/g of dry support) were particle size of bagasse in the range of 6–8 mm, incubation temperature and pH: 30.2°C and 6.0, moisture content of bagasse: 75.3%, inoculum concentration: 1 × 107 spores/g of dry support and concentrations of starch, yeast extract and KH2PO4: 70.5, 11.59 and 9.83 mg/g of dry support, respectively. After optimization, enzyme production was assayed at the optimized conditions. The results obtained corroborate the effectiveness and reliability of the empirical models obtained.  相似文献   
997.
998.
The complete sequence of the Mycobacterium leprae genome, an obligate intracellular pathogen, shows a dramatic reduction of functional genes, with a coding capacity of less than 50%. Despite this massive gene decay, the leprosy bacillus has managed to preserve a minimal gene set, most of it shared with Mycobacterium tuberculosis, allowing its survival in the host with ensuing pathological manifestations. Thus, the identification of proteins that are actually expressed in vivo by M. leprae is of high significance in understanding obligate, intracellular mycobacterial pathogenesis. In this study, a high-throughput proteomic approach was undertaken resulting in the identification of 218 new M. leprae proteins. Of these, 60 were in the soluble/cytosol fraction, 98 in the membrane and 104 in the cell wall. Although several proteins were identified in more than one subcellular fraction, the majority were unique to one. As expected, a high percentage of these included enzymes responsible for lipid biosynthesis and degradation, biosynthesis of the major components of the mycobacterial cell envelope, proteins involved in transportation across lipid barriers, and lipoproteins and transmembrane proteins with unknown functions. The data presented in this study contribute to our understanding of the in vivo composition and physiology of the mycobacterial cell envelope, a compartment known to play a major role in bacterial pathogenesis.  相似文献   
999.
In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16–52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha−1 y−1, 95% confidence intervals [0.07, 0.39] MgC ha−1 y−1), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y−1) compared with the tree community as a whole (+0.15 % y−1); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y−1), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.  相似文献   
1000.
Abstract. Gradients in acidity‐alkalinity and nutrient availability were studied in 2 Sphagnum‐dominated peatlands on the southeastern Italian Alps. Decreasing concentrations of most mineral elements (Ca2+, Mg2+, Mn2+, Al3+ and Si4+) in pore water indicated a progressively lower influx of mineral‐soil water from the slightly minerotrophic conditions in the peatland margins to ombrogenous conditions in the central part of the peatlands. This was paralleled by decreasing concentrations of ash, bulk density, Ca, Fe and, partly, Mn in the peat. The nutrient gradient, as defined by pore water concentrations of N and P, was largely independent of the acidity‐ alkalinity gradient: NO3‐ and PO43‐ had similar concentrations throughout the gradient, whereas NH4+ concentrations increased with increasing pore‐water pH. In contrast, the peat nutrient gradient coincided with the acidity‐alkalinity gradient, with total concentrations of N and P decreasing from the margin to the centre. Bryophytes and vascular plants had different responses along the acidity‐alkalinity gradient and the nutrient gradient. Bryophyte distribution reflected the acidity‐alkalinity gradient both in pore water and in peat. Vascular plant distribution was mainly influenced by variations in nutrient availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号