首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2568篇
  免费   203篇
  国内免费   2篇
  2021年   24篇
  2019年   22篇
  2018年   28篇
  2017年   19篇
  2016年   35篇
  2015年   77篇
  2014年   95篇
  2013年   105篇
  2012年   128篇
  2011年   136篇
  2010年   90篇
  2009年   83篇
  2008年   112篇
  2007年   126篇
  2006年   111篇
  2005年   121篇
  2004年   94篇
  2003年   91篇
  2002年   111篇
  2001年   58篇
  2000年   51篇
  1999年   50篇
  1998年   42篇
  1997年   38篇
  1996年   39篇
  1995年   40篇
  1994年   32篇
  1993年   31篇
  1992年   49篇
  1991年   46篇
  1990年   55篇
  1989年   41篇
  1988年   41篇
  1987年   42篇
  1986年   37篇
  1985年   42篇
  1984年   28篇
  1983年   24篇
  1982年   26篇
  1981年   46篇
  1980年   17篇
  1979年   30篇
  1978年   15篇
  1975年   20篇
  1974年   21篇
  1972年   17篇
  1971年   14篇
  1970年   14篇
  1969年   14篇
  1968年   18篇
排序方式: 共有2773条查询结果,搜索用时 203 毫秒
71.
Algorithms predicting RNA secondary structures based on different folding criteria – minimum free energies (mfe), kinetic folding (kin), maximum matching (mm) – and different parameter sets are studied systematically. Two base pairing alphabets were used: the binary GC and the natural four-letter AUGC alphabet. Computed structures and free energies depend strongly on both the algorithm and the parameter set. Statistical properties, such as mean number of base pairs, mean numbers of stacks, mean loop sizes, etc., are much less sensitive to the choice of parameter set and even of algorithm. Some features of RNA secondary structures, such as structure correlation functions, shape space covering and neutral networks, seem to depend only on the base pairing logic (GC or AUGC alphabet). Received: 16 May 1996 / Accepted: 10 July 1996  相似文献   
72.
73.
74.
75.
We present and study the behavior of a simple kinetic model for the melting of RNA secondary structures, given that those structures are known. The model is then used as a map that. assigns structure dependent overall rate constants of melting (or refolding) to a sequence. This induces a landscape of reaction rates, or activation energies, over the space of sequences with fixed length. We study the distribution and the correlation structure of these activation energies. Correspondence to: P. Schuster  相似文献   
76.
For maximal rates of CO2 assimilation in isolated intact spinach chloroplasts the generation of the adequate NADPH/ATP ratio is achieved either by cyclic electron flow around photosystem I or by linear electron transport to oxaloacetate, nitrite or oxygen (Mehler-reaction). The interrelationships between these poising mechanisms turn out to be strictly hierarchical. In the presence of antimycin A, an inhibitor of ferredoxin-dependent cyclic electron transport, the reduction of both, oxaloacetate and nitrite, but not that of oxygen restores CO2 fixation. When oxaloacetate and nitrite are added at low concentrations simultaneously during steady-state CO2 fixation, the reduction of nitrite is clearly preferred over the reduction of oxaloacetate, but CO2 fixation is not influenced. Nitrite reduction is not decreased upon addition of oxaloacetate, but vice versa. This is due to the regulation of NADP-malate dehydrogenase activation by electron pressure via the ferredoxin/thioredoxin system on the one hand, and by the NADPH/(NADP+NADPH) ratio (anabolic reduction charge, ARC) on the other hand. Thus the closing of the malate valve prevents drainage of reducing equivalents from the chloroplast (1) when a low ARC indicates a high demand for NADPH in the stroma and (2) when nitrite reduction reduces the electron pressure at ferredoxin. The malate valve is opened when cyclic electron transport is inhibited by antimycin A. Under these conditions the rate of malate formation is higher than in the absence of the inhibitor even in the presence of oxaloacetate, thus indicating that the regulation of the malate valve functions at various redox states of the acceptor side of Photosystem I.Abbreviations ARC anabolic reduction charge (NADPH/(NADP+NADPH)) - Chl chlorophyll - DTT dithiothreitol; Fd-ferredoxin - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetate - PS photosystem - qN non-photochemical quenching - qP photochemical quenching - E quantum efficiency of PS II Dedicated to Prof. Dr. Hans Walter Heldt on the occasion of his 60th birthday.  相似文献   
77.
The interaction of fatty-acid synthesis with starch synthesis has been studied in intact amyloplasts isolated from floral buds of cauliflower (Brassica oleracea L.). These amyloplasts perform acetate-dependent fatty acid synthesis at maximum rates only at high external ATP concentrations. Neither pyruvate nor malate inhibit acetate-dependent fatty-acid synthesis. In contrast, acetate is inhibitory to the low pyruvate-dependent fatty acid synthesis. These observations indicate that neither pyruvate nor malate are used as natural precursors of fatty-acid synthesis. In contrast to fatty-acid synthesis, the rate of glucose-6-phosphate-dependent starch synthesis is already saturated in the presence of much lower ATP concentrations. Rising rates of starch synthesis influence negatively the process of acetate-dependent fatty acid synthesis. This inhibition appears to occur under both limiting and saturating concentrations of external ATP, indicating that the rate of ATP uptake is limiting when both biochemical pathways are active. The rate of starch synthesis is modulated specifically by the concentration of 3-phosphoglycerate in the incubation medium. This observation leads to the conclusion that the activity of ADP-glucose pyrophosphorylase is of primary importance for the control of both, starch and fatty-acid synthesis. Using the modified approach of Kacser and Burns (1973; Symp. Soc. Exp. Biol.27, 65–104) we have quantified the contribution of the rate of starch synthesis to the control of the metabolic flux through fatty-acid synthesis.Abbreviations ADPGlc-PPase ADPglucose pyrophosphorylase - Glc6P glucose-6-phosphate - PGA 3-phosphoglyceric acid  相似文献   
78.
Summary Cytogenetic examination of transgenic Arabidopsis thaliana (L.) Heynh. plants obtained by Agrobacterium-mediated gene transfer to cotyledon- and root-explants or by direct gene transfer into protoplasts revealed a high percentage of tetraploid or aneuploid transformants. Depending on the transformation procedure used, 13% (root explant transformation), 33% (cotyledon explant transformation), or 38% (direct gene transfer) of the transformants showed aberrant ploidy levels. A good correlation between the ploidy level of a plant and the size of its pollen grains was observed. This allows quick and simple testing of the ploidy level of transgenic Arabidopsis plants.Abbreviations AM Arabidopsis medium - ANOVA analysis of variance - DAPI 4,6-Diamidino-2-phenylindole - PEG polyethyleneglycol  相似文献   
79.
80.
The notion of an RNA world has been introduced for a prebiotic scenario that is dominated by RNA molecules and their properties, in particular their capabilities to act as templates for reproduction and as catalysts for several cleavage and ligation reactions of polynucleotides and polypeptides. This notion is used here also for simple experimental assays which are well suited to study evolution in the test tube. In molecular evolution experiments fitness is determined in essence by the molecular structures of RNA molecules. Evidence is presented for adaptation to environment in cell-free media. RNA based molecular evolution experiments have led to interesting spin-offs in biotechnology, commonly called applied molecular evolution, which make use of Darwinian trial-and-error strategies in order to synthesize new pharmacological compounds and other advanced materials on a biological basis.Error-propagation in RNA replication leads to formation of mutant spectra called quasispecies. An increase in the error rate broadens the mutant spectrum. There exists a sharply defined threshold beyond which heredity breaks down and evolutionary adaptation becomes impossible. Almost all RNA viruses studied so far operate at conditions close to this error threshold. Quasispecies and error thresholds are important for an understanding of RNA virus evolution, and they may help to develop novel antiviral strategies.Evolution of RNA molecules can be studied and interpreted by considering secondary structures. The notion of sequence space introduces a distance between pairs of RNA sequences which is tantamount to counting the minimal number of point mutations required to convert the sequences into each other. The mean sensitivity of RNA secondary structures to mutation depends strongly on the base pairing alphabet: structures from sequences which contain only one base pair (GC or AU are much less stable against mutation than those derived from the natural (AUGC) sequences. Evolutionary optimization of two-letter sequences in thus more difficult than optimization in the world of natural RNA sequences with four bases. This fact might explain the usage of four bases in the genetic language of nature.Finally we study the mapping from RNA sequences into secondary structures and explore the topology of RNA shape space. We find that neutral paths connecting neighbouring sequences with identical structures go very frequently through entire sequence space. Sequences folding into common structures are found everywhere in sequence space. Hence, evolution can migrate to almost every part of sequence space without hill climbing and only small fractions of the entire number of sequences have to be searched in order to find suitable structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号