首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1349篇
  免费   86篇
  1435篇
  2021年   11篇
  2019年   14篇
  2018年   15篇
  2017年   8篇
  2016年   27篇
  2015年   46篇
  2014年   55篇
  2013年   59篇
  2012年   70篇
  2011年   75篇
  2010年   58篇
  2009年   60篇
  2008年   65篇
  2007年   81篇
  2006年   79篇
  2005年   78篇
  2004年   64篇
  2003年   52篇
  2002年   67篇
  2001年   17篇
  2000年   17篇
  1999年   19篇
  1998年   20篇
  1997年   28篇
  1996年   23篇
  1995年   20篇
  1994年   16篇
  1993年   11篇
  1992年   7篇
  1991年   18篇
  1990年   11篇
  1989年   12篇
  1988年   15篇
  1987年   8篇
  1986年   10篇
  1985年   11篇
  1984年   12篇
  1983年   10篇
  1982年   10篇
  1981年   15篇
  1980年   9篇
  1979年   10篇
  1978年   9篇
  1976年   12篇
  1975年   9篇
  1974年   8篇
  1970年   9篇
  1968年   7篇
  1967年   8篇
  1965年   6篇
排序方式: 共有1435条查询结果,搜索用时 15 毫秒
121.
122.
The airway epithelium is a central player in the defense against pathogens including efficient mucociliary clearance and secretion of immunoglobulins, mainly polymeric IgA, but also IgG. Pulmonary administration of therapeutic antibodies on one hand, and intranasal immunization on the other, are powerful tools to treat airway infections. In either case, the airway epithelium is the primary site of antibody transfer. In various epithelia, bi-polar transcytosis of IgG and IgG immune complexes is mediated by the human neonatal Fc receptor, FcRn, but FcRn expression in the nasal epithelium had not been demonstrated, so far. We prepared affinity-purified antibodies against FcRn α-chain and confirmed their specificity by Western blotting and immunofluorescence microscopy. These antibodies were used to study the localization of FcRn α-chain in fixed nasal tissue. We here demonstrate for the first time that ciliated epithelial cells, basal cells, gland cells, and endothelial cells in the underlying connective tissue express the receptor. A predominant basolateral steady state distribution of the receptor was observed in ciliated epithelial as well as in gland cells. Co-localization of FcRn α-chain with IgG or with early sorting endosomes (EEA1-positive) but not with late endosomes/lysosomes (LAMP-2-positive) in ciliated cells was observed. This is indicative for the presence of the receptor in the recycling/transcytotic pathway but not in compartments involved in lysosomal degradation supporting the role of FcRn in IgG transcytosis in the nasal epithelium.  相似文献   
123.
Fragile X‐associated tremor/ataxia syndrome (FXTAS) is a late‐onset neurodegenerative disorder that appears in at least one‐third of adult carriers of a premutation (55‐200 CGG repeats) in the fragile X mental retardation 1 (FMR1) gene. Several studies have shown that mitochondrial dysfunction may play a central role in aging and also in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease as well as in FXTAS. It has been recently proposed that mtDNA copy number, measured by the number of mitochondrial genomes per nuclear genome (diploid), could be a useful biomarker of mitochondrial dysfunction. In order to elucidate the role of mtDNA variation in the pathogenesis of FXTAS, mtDNA copy number was quantified by digital droplet Polymerase chain reaction. In human brain samples, mtDNA levels were measured in the cerebellar vermis, dentate nucleus, parietal and temporal cortex, thalamus, caudate nucleus and hippocampus from a female FXTAS patient, a FMR1 premutation male carrier without FXTAS and from three male controls. The mtDNA copy number was further analyzed using this technology in dermal fibroblasts primary cultures derived from three FXTAS patients and three controls as well as in cortex and cerebellum of a CGG knock in FXTAS mice model. Finally, qPCR was carried out in human blood samples. Results indicate reduced mtDNA copy number in the specific brain region associated with disease progression in FXTAS patients, providing new insights into the role of mitochondrial dysfunction in the pathogenesis of FXTAS.  相似文献   
124.
Two media used to mature adult porcine oocytes for somatic cell nuclear transfer were compared. In the first experiment, parthenogenetic embryos were produced using a maturation medium used by us previously to clone pigs (OMM199) and that described by Kühholzer et al. (2001) to transport oocytes overnight (BOMED). There was no difference in maturation rates between the two different media. However, BOMED medium increased the percentage of parthenogenetic embryos that developed to the blastocyst stage compared with OMM199 (49% vs. 29%, respectively). In a second experiment, BOMED medium increased the percentage of SCNT embryos that developed to the blastocyst stage compared with OMM199 (22% vs. 8%, respectively). The efficiency of our cloning protocol using adult oocytes matured in BOMED medium was then determined by transferring SCNT embryos reconstructed using adult fibroblasts to synchronized recipients. Primary cultures of adult fibroblasts were obtained from two adult male pigs and used for SCNT (passages 2-4). Between 82 and 146 fused couplets were transferred to seven recipients synchronized 1 day behind the embryos. Five recipients (71% pregnancy rate) subsequently farrowed a total of 23 piglets (4.4 average litter size). Overall efficiencies (liveborn/embryos transferred) were 3.2% for all transfers and 4.3% for animals that gave birth.  相似文献   
125.
Onconase is an extremely stable member of the RNase A superfamily. The increase in the thermodynamic stability by 20 kJ x mol(-1) in comparison to RNase A was expected to result in altered folding behavior. Despite the lack of cis-Pro residues in native Onconase, refolding at low concentrations of guanidine hydrochloride was complex and showed three kinetic phases (fast, medium, and slow), with rate constants differing by a factor of about 10 each. None of the phases could be accelerated by peptidyl-prolyl cis-trans isomerases, pointing to the absence of kinetic phases that are limited by Pro isomerization. The detailed analysis by various probes indicates that the burial of the N-terminal Trp3, which is associated with the restoration of the active site, occurs in the slow phase, i.e. in the last step of refolding. Evidently, in contrast to the folding of RNase A, there is no catalytically active native-like intermediate in the folding of Onconase.  相似文献   
126.
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of ‘termite gut treponemes’ from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse ‘termite cluster I', a deep-branching sister group of Treponemataceae (fam. ‘Termitinemataceae’) that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.  相似文献   
127.
A novel, type 1 ribosome-inactivating protein designated charybdin was isolated from bulbs of Charybdis maritima agg. The protein, consisting of a single polypeptide chain with a molecular mass of 29 kDa, inhibited translation in rabbit reticulocytes with an IC50 of 27.2 nm. Plant genomic DNA extracted from the bulb was amplified by PCR between primers based on the N-terminal and C-terminal sequence of the protein from dissolved crystals. The complete mature protein sequence was derived by partial DNA sequencing and terminal protein sequencing, and was confirmed by high-resolution crystal structure analysis. The protein contains Val at position 79 instead of the conserved Tyr residue of the ribosome-inactivating proteins known to date. To our knowledge, this is the first observation of a natural substitution of a catalytic residue at the active site of a natural ribosome-inactivating protein. This substitution in the active site may be responsible for the relatively low in vitro translation inhibitory effect compared with other ribosome-inactivating proteins. Single crystals were grown in the cold room from PEG6000 solutions. Diffraction data collected to 1.6 A resolution were used to determine the protein structure by the molecular replacement method. The fold of the protein comprises two structural domains: an alpha + beta N-terminal domain (residues 4-190) and a mainly alpha-helical C-terminal domain (residues 191-257). The active site is located in the interface between the two domains and comprises residues Val79, Tyr117, Glu167 and Arg170.  相似文献   
128.
Social (S)-motility in Myxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M. xanthus was lacking. In this study, we screened 5000 randomly mutagenized colonies for defects in S-motility and EPS and identified two genetic regions essential for EPS biogenesis: the EPS synthesis (eps) region and the EPS-associated (eas) region. Mutants with insertions in the eps and eas regions were defective in S-motility and fruiting body formation. These mutants failed to bind the dye calcofluor white, indicating that they lacked EPS; however, they retained normal TFP and LPS. Analysis of the eps locus showed several open reading frames (ORFs) that encode homologues to glycosyltransferases, glucanases and EPS transporters as well as regulatory proteins; the eas locus contains two ORFs: one exhibits homology to hypothetical proteins with a conserved domain of unknown function and the other displays no apparent homology to other proteins in the database. Further genetic mutagenesis analysis indicates that the whole eps region is involved in the biosynthesis of fibrils and fibril EPS. The operon at the proximal end of the eps region was analysed by generating in-frame deletion mutations. These mutants showed varying degrees of defects in the bacterium's ability to produce EPS or perform EPS-related functions, confirming the involvement of these genes in M. xanthus EPS biogenesis.  相似文献   
129.
130.
The lung is protected against oxidative stress by a variety of antioxidants and type II pneumocytes seem to play an important role in antioxidant defense. Previous studies have shown that inhalation of NO2 results in acute and chronic lung injury. How the expression and enzyme activity of antioxidant enzymes are influenced in type II cells of different inflammatory stages has yet not been studied. To elucidate this question, we exposed rats to 10 ppm NO2 for 3 or 20 days to induce acute or chronic lung injury. From these and air-breathing rats, type II pneumocytes were isolated. The mRNA expression and protein content of CuZnSOD and MnSOD as well as total SOD-specific enzyme activity were determined. For the acute lung injury (3 d NO2), the expression of CuZnSOD mRNA was significantly increased, while MnSOD expression was significantly reduced after 3 days of NO 2 exposure. For the chronic lung injury (20 d NO2), CuZnSOD expression was still enhanced, while MnSOD expression was comparable to control. In parallel to CuZnSOD mRNA expression, the protein amount was significantly increased in acute and chronic lung injury however MnSOD protein content exhibited no intergroup differences. Total SOD enzyme activity showed a significant decrease after 3 days of NO2 exposure and was similar to control after 20 days. We conclude that during acute and chronic lung injury in type II pneumocytes expression and protein synthesis of CuZnSOD and MnSOD are regulated differently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号