首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3878篇
  免费   236篇
  2023年   40篇
  2022年   53篇
  2021年   114篇
  2020年   80篇
  2019年   103篇
  2018年   130篇
  2017年   112篇
  2016年   137篇
  2015年   189篇
  2014年   251篇
  2013年   279篇
  2012年   315篇
  2011年   334篇
  2010年   191篇
  2009年   156篇
  2008年   224篇
  2007年   205篇
  2006年   206篇
  2005年   178篇
  2004年   163篇
  2003年   115篇
  2002年   115篇
  2001年   48篇
  2000年   26篇
  1999年   32篇
  1998年   25篇
  1997年   20篇
  1996年   17篇
  1995年   15篇
  1994年   15篇
  1993年   9篇
  1992年   17篇
  1991年   16篇
  1990年   11篇
  1989年   21篇
  1988年   15篇
  1987年   5篇
  1986年   9篇
  1985年   6篇
  1984年   15篇
  1983年   12篇
  1982年   7篇
  1981年   12篇
  1980年   11篇
  1979年   7篇
  1976年   9篇
  1974年   6篇
  1973年   7篇
  1972年   5篇
  1971年   5篇
排序方式: 共有4114条查询结果,搜索用时 46 毫秒
91.
In this study, the mechanism of the internalization and the cellular distribution of 59 fluorescein conjugated PS-ODN (FITC-ODN) after transfection with different mixed lipidic vesicles/oligo complexes (lipoplexes) have been investigated. Mixed lipidic vesicles were prepared with one of the most used cationic lipid (DOTAP) and different amounts of a cholic acid (UDCA) to release the oligo into HaCaT cells. Using flow cytometry, the cellular uptake of the oligo was studied with and without different inhibitors able to block selectively the different pathways involved in the internalization mechanism. The intracellular distribution of the oligo was analyzed by confocal laser scanning microscopy (CLSM), treating the cells with the lipoplexes and directly observing without any fixing procedure. To better carry out the colocalization studies, fluorescent-labeled markers, specific for the different cellular compartments, were coincubated with 59 fluorescein-conjugated 29-mer phosphorotioate oligonucleotide (FITC-ODN). The different lipidic vesicles affect the internalization mechanism of FITC-ODN. After using the inhibitors, the uptake of complexes involved a different internalization mechanism. The live CLSM analysis demonstrated that, after 1 hour from the complex incubation, the oligo was transferred into cells and localized into the endosomes; after 24 hours, the oligo was intracellularly localized close to the nuclear structure in a punctuate pattern. However, the results from fusion experiments showed also a binding of a quite low amount of oligo with the cell membranes.  相似文献   
92.
93.
In this ethnobotanical study, the authors provide the first quantitative analysis of the use of wild edible plants in Estonia, describing the domains and assessing the food importance of different species. The information was collected using free‐listing written questionnaires and concerned plants used by the respondents in their childhood. As part of a major study, this article covers the responses of professionals with some botanical education at vocational or university level, to ensure the greatest possible reliability without using voucher specimens. Fifty‐eight respondents provided information on the use of 137 plant taxa, corresponding to approximately 6% of the native and naturalized vascular plants of Estonia. According to use frequency, the most typical wild food plant of Estonia is a fruit, eaten raw as a snack. The results clearly signal that the majority of famine and food shortage plants had already been forgotten by the end of the 20th century, but new plants have been introduced as green vegetables for making salads. Despite changes in the nomenclature of the plants, the use of wild food plants in Estonia was still thriving at the turn of the 20th century, covering many domains already forgotten in urbanized modern Europe. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 239–253.  相似文献   
94.
In the present study, we have demonstrated that membrane-free extracts of etiolated shoots of Phaseolus coccineus seedlings show tocopherol oxidase activity. For this reaction, presence of membrane lipids, such as lecithin and mixture of plant lipids was required. The rate of the reaction was the highest for α-tocopherol and decreased in the order α ? β > γ > δ tocopherols. In the case of α-tocopherol, the main oxidation product was α-tocopherolquinone, while for the other tocopherol homologues the dominant products were other derivatives. When the enzyme activity was measured in leaves, hypocotyls and roots of etiolated seedlings of P. coccineus, the oxidase activity was the highest in extracts of leaves and decreased towards the roots where no activity was detected. The effect of hydrogen peroxide and of different inhibitors on the reaction suggest that tocopherol oxidase does not belong to peroxidases or flavin oxidases but rather to multi-copper oxidases, such as polyphenol oxidases or laccases. On the other hand, catechol, the well-known substrate of polyphenol oxidases and laccases, was not oxidized by the enzyme, indicating a high substrate specificity of the tocopherol oxidase.  相似文献   
95.
Prion protein (PrPC) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrPC interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrPC co‐opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross‐talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrPC‐mediated axonogenesis in peripheral neurons in response to STI1 and laminin‐γ1 chain‐derived peptide (Ln‐γ1). STI1 and Ln‐γ1 promoted robust axonogenesis in wild‐type neurons, whereas no effect was observed in neurons from PrPC‐null mice. PrPC binding to Ln‐γ1 or STI1 led to an increase in intracellular Ca2+ levels via distinct mechanisms: STI1 promoted extracellular Ca2+ influx, and Ln‐γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln‐γ1, but depends on, C‐type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrPC‐mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrPC. These results suggest a role for PrPC as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.  相似文献   
96.
Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS.  相似文献   
97.
The first forensic entomological study performed in Portugal is presented. Two piglet (Sus scrofa L.) carcasses were used to determine adult Calliphoridae activity on carrion over a period of 121 days, all along the end of spring and the summer, both in a shaded and a sunny site. Five decomposition stages were observed and a total of 10723 adult Calliphoridae, belonging to 11 species, were collected. Calliphora vicina, Calliphora vomitoria, Chrysomya albiceps and Lucilia caesar were the dominant species in this study. Decomposition was faster on the carcass exposed to the sun and the number of Calliphoridae specimens was higher there than in the shaded site. It was found a significant effect of the decomposition stage in the number of specimens attracted to the carcass, as well as a significant effect of the interaction between the decomposition stage and insolation regime. Calliphora and Lucilia species did not show preference for sunny or shaded areas. Important differences in the Calliphoridae community structure were found compared to other regions of the Iberian Peninsula, reinforcing the need of further studies in different environments and regions of this geographical area in order to collect information about the local necrophagous fauna used in forensic practice.  相似文献   
98.
99.
The objective of this study was to determine the effects of farm management and environmental factors on preharvest spinach contamination with generic Escherichia coli as an indicator of fecal contamination. A repeated cross-sectional study was conducted by visiting spinach farms up to four times per growing season over a period of 2 years (2010 to 2011). Spinach samples (n = 955) were collected from 12 spinach farms in Colorado and Texas as representative states of the Western and Southwestern United States, respectively. During each farm visit, farmers were surveyed about farm-related management and environmental factors using a questionnaire. Associations between the prevalence of generic E. coli in spinach and farm-related factors were assessed by using a multivariable logistic regression model including random effects for farm and farm visit. Overall, 6.6% of spinach samples were positive for generic E. coli. Significant risk factors for spinach contamination with generic E. coli were the proximity (within 10 miles) of a poultry farm, the use of pond water for irrigation, a >66-day period since the planting of spinach, farming on fields previously used for grazing, the production of hay before spinach planting, and the farm location in the Southwestern United States. Contamination with generic E. coli was significantly reduced with an irrigation lapse time of >5 days as well as by several factors related to field workers, including the use of portable toilets, training to use portable toilets, and the use of hand-washing stations. To our knowledge, this is the first report of an association between field workers'' personal hygiene and produce contamination with generic E. coli at the preharvest level. Collectively, our findings support that practice of good personal hygiene and other good farm management practices may reduce produce contamination with generic E. coli at the preharvest level.  相似文献   
100.
To understand the genotypic variation of citrus to mild salt stress, a proteomic approach has been carried out in parallel on two citrus genotypes (‘Cleopatra’ and ‘Willow leaf’ mandarins), which differ for Na+ and Cl accumulation, and their cognate autotetraploids (4×). Using two-dimensional electrophoresis approximately 910 protein spots were reproducibly detected in control and salt-stressed leaves of all genotypes. Among them, 44 protein spots showing significant variations at least in one genotype were subjected to mass spectrometry analysis for identification. Salt-responsive proteins were involved in several functions, including photosynthetic processes, ROS scavenging, stress defence, and signalling. Genotype factors affect the salt-responsive pattern, especially that of carbon metabolism. The no ion accumulator ‘Cleopatra’ mandarin genotype showed the highest number of salt-responsive proteins, and up-regulation of Calvin cycle-related proteins. Conversely the ion accumulator ‘Willow leaf’ mandarin showed high levels of several photorespiration-related enzymes. A common set of proteins (twelve spots) displayed higher levels in salt-stressed leaves of 2× and 4× ‘Cleopatra’ and 4× ‘Willow leaf’ mandarin. Interestingly, antioxidant enzymes and heat shock proteins showed higher constitutive levels in 4× ‘Cleopatra’ mandarin and 4× ‘Willow leaf’ mandarin compared with the cognate 2× genotype. This work provides for the first time information on the effect of 8 weeks of salt stress on citrus genotypes contrasting for ion accumulation and their cognate autotetraploids. Results underline that genetic factors have a predominant effect on the salt response, although a common stress response independent from genotype was also found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号