首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   24篇
  2024年   1篇
  2023年   2篇
  2022年   11篇
  2021年   8篇
  2020年   10篇
  2019年   11篇
  2018年   15篇
  2017年   11篇
  2016年   12篇
  2015年   14篇
  2014年   13篇
  2013年   11篇
  2012年   10篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   9篇
  2007年   10篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
排序方式: 共有176条查询结果,搜索用时 31 毫秒
31.
Orthodontic force compresses the periodontal ligament promoting the expression of pro-inflammatory mediators and matrix metalloproteinases responsible for tooth movement. The extent in time while periodontal cells are being treated and the increment in the amount of mechanical stress caused by the orthodontic force is thought to regulate the levels of metalloproteinases in the periodontal tissue. To study the possible regulation in the activity of metalloproteinases 2, 3, 7, 9, and 10 by simulated orthodontic force, human periodontal ligament fibroblast cultures were centrifuged (141×g) for 30, 60, 90, and 120 min, simulating the orthodontic force. Cell viability, protein quantification, and activity of metalloproteinases by zymography were evaluated at 24, 48, and 72 h after centrifugation in both cell lysates and growth medium. The activity of the 72-kDa matrix metalloproteinase 2 was decreased at 24 h regardless of the duration of centrifugation and at 48 h in cells centrifuged for 30 min only. Decrease in the amount of total protein in lysates was seen at 48 and 72 h with no change in cell viability. The data seem to indicate that the amount of mechanical stress regulates the levels of secreted matrix metalloproteinase 2. In addition, the centrifugation as a model for simulated orthodontic force may be used as a simple and reliable method to study the role played by matrix metalloproteinases in periodontal ligament when submitted to mechanical force as occurring during tooth movement.  相似文献   
32.
33.
Translationally controlled tumour protein (TCTP) is a ubiquitously distributed protein in eukaryotes, involved in the regulation of several processes, including cell cycle progression, cell growth, stress protection, apoptosis and maintenance of genomic integrity. Its expression is induced during the early stages of tomato (Solanum lycopersicum) infection by the potyvirus Pepper yellow mosaic virus (PepYMV, a close relative of Potato virus Y). Tomato TCTP is a protein of 168 amino acids, which contains all the conserved domains of the TCTP family. To study the effects of TCTP silencing in PepYMV infection, Nicotiana benthamiana plants were silenced by virus‐induced gene silencing (VIGS) and transgenic tomato plants silenced for TCTP were obtained. In the early stages of infection, both tomato and N. benthamiana silenced plants accumulated less virus than control plants. Transgenic tomato plants showed a drastic reduction in symptoms and no viral accumulation at 14 days post‐inoculation. Subcellular localization of TCTP was determined in healthy and systemically infected N. benthamiana leaves. TCTP was observed in both the nuclei and cytoplasm of non‐infected cells, but only in the cytoplasm of infected cells. Our results indicate that TCTP is a growth regulator necessary for successful PepYMV infection and that its localization is altered by the virus, probably to favour the establishment of virus infection. A network with putative interactions that may occur between TCTP and Arabidopsis thaliana proteins was built. This network brings together experimental data of interactions that occur in other eukaryotes and helps us to discuss the possibilities of TCTP involvement in viral infection.  相似文献   
34.
Semen contains relatively ill-defined regulatory components that likely aid fertilization, but which could also interfere with defense against infection. Each ejaculate contains trillions of exosomes, membrane-enclosed subcellular microvesicles, which have immunosuppressive effects on cells important in the genital mucosa. Exosomes in general are believed to mediate inter-cellular communication, possibly by transferring small RNA molecules. We found that seminal exosome (SE) preparations contain a substantial amount of RNA from 20 to 100 nucleotides (nts) in length. We sequenced 20–40 and 40–100 nt fractions of SE RNA separately from six semen donors. We found various classes of small non-coding RNA, including microRNA (21.7% of the RNA in the 20–40 nt fraction) as well as abundant Y RNAs and tRNAs present in both fractions. Specific RNAs were consistently present in all donors. For example, 10 (of ∼2600 known) microRNAs constituted over 40% of mature microRNA in SE. Additionally, tRNA fragments were strongly enriched for 5’-ends of 18–19 or 30–34 nts in length; such tRNA fragments repress translation. Thus, SE could potentially deliver regulatory signals to the recipient mucosa via transfer of small RNA molecules.  相似文献   
35.
Sex differences in the human olfactory function reportedly exist for olfactory sensitivity, odorant identification and memory, and tasks in which odors are rated based on psychological features such as familiarity, intensity, pleasantness, and others. Which might be the neural bases for these behavioral differences? The number of cells in olfactory regions, and especially the number of neurons, may represent a more accurate indicator of the neural machinery than volume or weight, but besides gross volume measures of the human olfactory bulb, no systematic study of sex differences in the absolute number of cells has yet been undertaken. In this work, we investigate a possible sexual dimorphism in the olfactory bulb, by quantifying postmortem material from 7 men and 11 women (ages 55–94 years) with the isotropic fractionator, an unbiased and accurate method to estimate absolute cell numbers in brain regions. Female bulbs weighed 0.132 g in average, while male bulbs weighed 0.137 g, a non-significant difference; however, the total number of cells was 16.2 million in females, and 9.2 million in males, a significant difference of 43.2%. The number of neurons in females reached 6.9 million, being no more than 3.5 million in males, a difference of 49.3%. The number of non-neuronal cells also proved higher in women than in men: 9.3 million and 5.7 million, respectively, a significant difference of 38.7%. The same differences remained when corrected for mass. Results demonstrate a sex-related difference in the absolute number of total, neuronal and non-neuronal cells, favoring women by 40–50%. It is conceivable that these differences in quantitative cellularity may have functional impact, albeit difficult to infer how exactly this would be, without knowing the specific circuits cells make. However, the reported advantage of women as compared to men may stimulate future work on sex dimorphism of synaptic microcircuitry in the olfactory bulb.  相似文献   
36.
The increase in severity of droughts associated with greater mortality and reduced vegetation growth is one of the main threats to tropical forests. Drought resilience of tropical forests is affected by multiple biotic and abiotic factors varying at different scales. Identifying those factors can help understanding the resilience to ongoing and future climate change. Altitude leads to high climate variation and to different forest formations, principally moist or dry tropical forests with contrasted vegetation structure. Each tropical forest can show distinct responses to droughts. Locally, topography is also a key factor controlling biotic and abiotic factors related to drought resilience in each forest type. Here, we show that topography has key roles controlling biotic and abiotic factors in each forest type. The most important abiotic factors are soil nutrients, water availability, and microclimate. The most important biotic factors are leaf economic and hydraulic plant traits, and vegetation structure. Both dry tropical forests and ridges (steeper and drier habitats) are more sensitive to droughts than moist tropical forest and valleys (flatter and wetter habitats). The higher mortality in ridges suggests that conservative traits are not sufficient to protect plants from drought in drier steeper habitats. Our synthesis highlights that altitude and topography gradients are essential to understand mechanisms of tropical forest''s resilience to future drought events. We described important factors related to drought resilience, however, many important knowledge gaps remain. Filling those gaps will help improve future practices and studies about mitigation capacity, conservation, and restoration of tropical ecosystems.  相似文献   
37.
Goblet cells (GCs) and endocrine cells (ECs) play an important role in intestine physiology, and few studies currently exist for Amazonian fishes. This study aimed to quantify the distribution of GCs and ECs producing cholecystokinin-8 and neuropeptide Y, assessed by mucin histochemistry and peptides immunohistochemistry, in the intestine of two Amazonian species with different feeding habits Tambaqui (Colossosoma macropomum) and hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus), an omnivore and carnivore, respectively. A systematic literature review correlating feeding habit and GC and EC distribution was also included to contribute to the comparative study. The results of this study provided novel information about the gut cells of Tambaqui and hybrid catfish. Both, GCs and ECs can be found sweeping the entire intestine of Tambaqui and hybrid catfish although the cells can be more concentrated in certain segments. The GCs and ECs in Tambaqui were more uniformly distributed in the midgut segments (T1, T2, and T3). Unlike, in hybrid catfish GCs were more concentrated in the hindgut (C4) and ECs mainly in the two midgut segments (C1 and C2) of hybrid catfish. Based on the comparison between Tambaqui, hybrid catfish, and other fishes in the literature review, we suggest that cell distribution can be partially explained by feeding habits, carnivorous vs. omnivorous.  相似文献   
38.
The objective of our study was to evaluate the association between peptidylarginine deiminase 4 (PAD4) concentration and its polymorphisms with mortality in patients with septic shock . We prospectively evaluated 175 patients aged over 18 years with septic shock upon intensive care unit (ICU) admission. However, 48 patients were excluded. Thus, 127 patients were enrolled in the study. At the time of the patients’ enrollment, demographic information was recorded. Blood samples were taken within the first 24 hours of the patient's admission to determine serum PAD4 concentrations and its polymorphism PADI4_89 [rs11203366], PADI4_94 [rs2240340] and PADI4_104 [rs1748033]. The mean age was 63.3 ± 15.2 years, 56.7% were male, PAD4 concentration was 4.62 (2.48‐6.20) ng/mL and the ICU mortality rate was 67.7%. The patients who died in the ICU had higher APACHE II and Sequential Organ Failure Assessment (SOFA) scores. In addition, PAD4 concentration was higher in patients who died during ICU stay. However, there were no differences regarding PADI4 polymorphisms and ICU mortality. In the logistic regression models, PAD4 concentrations were associated with ICU mortality when adjusted for APACHE II score and lactate (OR: 1.477; CI 95%: 1.186‐1.839; P < .001), and when adjusted for age, gender and APACHE II score (OR: 1.392; CI 95%: 1.145‐1.692; P < .001). In conclusion, PAD4 concentration, but not PADI4_89, PADI4_94 and PADI4_104 polymorphisms, is associated with ICU mortality in septic shock patients.  相似文献   
39.
Patterns of univariate trait variation across metacommunities are widely explored, as are searches for their underlying causes. Surprisingly, patterns of multivariate shape remain unknown, and the search for drivers of functional traits of communities often neglect the biogeographical distribution of phylogenetic clades. Our aim was to investigate multivariate shape distribution across metacommunities and to determine the main environmental drivers of shape beyond/taking into account the phylogenetic distribution of lineages. We obtained mean skull and mandible shape for 228 species of Neotropical sigmodontine rodents through geometric morphometrics (GM), and then calculated mean shapes for 1° × 1° cells across the Neotropics based on the incidence of sigmodontines. We investigated the effects of lineage distribution on mean trait variation by using phylogenetic fuzzy weighting to calculate principal coordinates of phylogenetic structure (PCPS). Effects of environmental variables on shape variation incorporating phylogenetic composition were realized through redundancy analysis. We found that the different distributions of major lineages throughout the Neotropics were responsible for much of the mean shape variation. The association of landscape features with tribal groupings (Oryzomyini with Amazonia and Phyllotini and Abrotrichini with the Andes) were standouts. Environmental variables and lineage distribution explain the same (i.e. shared) portion of shape variation, suggesting phylogenetic niche conservatism at the metacommunity level. Seasonality in temperature and land cover were the best environmental predictors of mean shape: larger tympanic bullae, incisive foramina, and check teeth are all associated with highly seasonal and less vegetated areas. Our new approach of using GM shape across metacommunities was demonstrably useful in understanding large‐scale biogeographical patterns of shape variation and identifying its underlying causes. The overlap between environmental variables and phylogenetic lineage distribution suggests that a process of niche conservatism is likely: the phenotype–environment correlation is mediated by the differential biogeographical distribution of the main clades.  相似文献   
40.
Mimicry, the resemblance of one species by another, is a complex phenomenon where the mimic (Batesian mimicry) or the model and the mimic (Mullerian mimicry) gain an advantage from this phenotypic convergence. Despite the expectation that mimics should closely resemble their models, many mimetic species appear to be poor mimics. This is particularly apparent in some systems in which there are multiple available models. However, the influence of model pattern diversity on the evolution of mimetic systems remains poorly understood. We tested whether the number of model patterns a predator learns to associate with a negative consequence affects their willingness to try imperfect, novel patterns. We exposed week‐old chickens to coral snake (Micrurus) color patterns representative of three South American areas that differ in model pattern richness, and then tested their response to the putative imperfect mimetic pattern of a widespread species of harmless colubrid snake (Oxyrhopus rhombifer) in different social contexts. Our results indicate that chicks have a great hesitation to attack when individually exposed to high model pattern diversity and a greater hesitation to attack when exposed as a group to low model pattern diversity. Individuals with a fast growth trajectory (measured by morphological traits) were also less reluctant to attack. We suggest that the evolution of new patterns could be favored by social learning in areas of low pattern diversity, while individual learning can reduce predation pressure on recently evolved mimics in areas of high model diversity. Our results could aid the development of ecological predictions about the evolution of imperfect mimicry and mimicry in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号