首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10770篇
  免费   803篇
  国内免费   587篇
  2024年   20篇
  2023年   139篇
  2022年   273篇
  2021年   431篇
  2020年   295篇
  2019年   345篇
  2018年   360篇
  2017年   292篇
  2016年   481篇
  2015年   634篇
  2014年   755篇
  2013年   823篇
  2012年   981篇
  2011年   918篇
  2010年   572篇
  2009年   498篇
  2008年   589篇
  2007年   544篇
  2006年   464篇
  2005年   416篇
  2004年   365篇
  2003年   347篇
  2002年   316篇
  2001年   139篇
  2000年   140篇
  1999年   118篇
  1998年   85篇
  1997年   84篇
  1996年   67篇
  1995年   57篇
  1994年   63篇
  1993年   50篇
  1992年   62篇
  1991年   56篇
  1990年   51篇
  1989年   38篇
  1988年   26篇
  1987年   18篇
  1986年   32篇
  1985年   23篇
  1984年   29篇
  1983年   11篇
  1982年   14篇
  1981年   14篇
  1980年   13篇
  1979年   8篇
  1978年   9篇
  1977年   12篇
  1976年   11篇
  1975年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
Wu Y  Yan J  Zhang R  Qu X  Ren S  Chen N  Huang S 《The Plant cell》2010,22(11):3745-3763
Actin cables in pollen tubes serve as molecular tracks for cytoplasmic streaming and organelle movement and are formed by actin bundling factors like villins and fimbrins. However, the precise mechanisms by which actin cables are generated and maintained remain largely unknown. Fimbrins comprise a family of five members in Arabidopsis thaliana. Here, we characterized a fimbrin isoform, Arabidopsis FIMBRIN5 (FIM5). Our results show that FIM5 is required for the organization of actin cytoskeleton in pollen grains and pollen tubes, and FIM5 loss-of-function associates with a delay of pollen germination and inhibition of pollen tube growth. FIM5 decorates actin filaments throughout pollen grains and tubes. Actin filaments become redistributed in fim5 pollen grains and disorganized in fim5 pollen tubes. Specifically, actin cables protrude into the extreme tips, and their longitudinal arrangement is disrupted in the shank of fim5 pollen tubes. Consequently, the pattern and velocity of cytoplasmic streaming were altered in fim5 pollen tubes. Additionally, loss of FIM5 function rendered pollen germination and tube growth hypersensitive to the actin-depolymerizing drug latrunculin B. In vitro biochemical analyses indicated that FIM5 exhibits actin bundling activity and stabilizes actin filaments. Thus, we propose that FIM5 regulates actin dynamics and organization during pollen germination and tube growth via stabilizing actin filaments and organizing them into higher-order structures.  相似文献   
993.
Formins have long been known to regulate microfilaments but have also recently been shown to associate with microtubules. In this study, Arabidopsis thaliana FORMIN14 (AFH14), a type II formin, was found to regulate both microtubule and microfilament arrays. AFH14 expressed in BY-2 cells was shown to decorate preprophase bands, spindles, and phragmoplasts and to induce coalignment of microtubules with microfilaments. These effects perturbed the process of cell division. Localization of AFH14 to microtubule-based structures was confirmed in Arabidopsis suspension cells. Knockdown of AFH14 in mitotic cells altered interactions between microtubules and microfilaments, resulting in the formation of an abnormal mitotic apparatus. In Arabidopsis afh14 T-DNA insertion mutants, microtubule arrays displayed abnormalities during the meiosis-associated process of microspore formation, which corresponded to altered phenotypes during tetrad formation. In vitro biochemical experiments showed that AFH14 bound directly to either microtubules or microfilaments and that the FH2 domain was essential for cytoskeleton binding and bundling. However, in the presence of both microtubules and microfilaments, AFH14 promoted interactions between microtubules and microfilaments. These results demonstrate that AFH14 is a unique plant formin that functions as a linking protein between microtubules and microfilaments and thus plays important roles in the process of plant cell division.  相似文献   
994.
Although the crab Scylla paramamosain has been cultured in China for a long time, little knowledge is available on how crabs respond to infection by bacteria. A forward suppression subtractive hybridization (SSH) cDNA library was constructed from their hemocytes and the up-regulated genes were identified in order to isolate differentially expressed genes in S. paramamosain in response to bacterial lipopolysaccharide (LPS). A total of 721 clones on the middle scale in the SSH library were sequenced. Among these genes, 271 potentially functional genes were recognized based on the BLAST searches in NCBI and were categorized into seven groups in association with different biological processes using AmiGO against the Gene Ontology database. Of the 271 genes, 269 translatable DNA sequences were predicted to be proteins, and the putative amino acid sequences were searched for conserved domains and proteins using the CD-Search service and BLASTp. Among 271 genes, 179 (66.1%) were annotated to be involved in different biological processes, while 92 genes (33.9%) were classified as an unknown-function gene group. It was noted that only 18 of the 271 genes (6.6%) had previously been reported in other crustaceans and most of the screened genes showed less similarity to known sequences based on BLASTn results, suggesting that 253 genes were found for the first time in S. paramamosain. Furthermore, two up-regulated genes screened from the SSH library were selected for full-length cDNA sequence cloning and in vivo expression study, including Sp-superoxide dismutase (Sp-Cu-ZnSOD) gene and Sp-serpin gene. The differential expression pattern of the two genes during the time course of LPS challenge was analyzed using real-time PCR. We found that both genes were significantly expressed in LPS-challenged crabs in comparison with control. Taken together, the study primarily provides the data of the up-regulated genes associated with different biological processes in S. paramamosain in response to LPS, by which the interesting genes or proteins potentially involved in the innate immune defense of S. paramamosain will be investigated in future.  相似文献   
995.
996.
997.
To prevent aspartimide formation and related side products in Asp‐Xaa, particularly Asp‐Gly‐containing peptides, usually the 2‐hydroxy‐4‐methoxybenzyl (Hmb) backbone amide protection is applied for peptide synthesis according to the Fmoc‐protocols. In the present study, the usefulness of the recently proposed acid‐labile dicyclopropylmethyl (Dcpm) protectant was analyzed. Despite the significant steric hindrance of this bulky group, N‐terminal H‐(Dcpm)Gly‐peptides are quantitatively acylated by potent acylating agents, and alternatively the dipeptide Fmoc‐Asp(OtBu)‐(Dcpm)Gly‐OH derivative can be used as a building block. In contrast to the Hmb group, Dcpm is inert toward acylations, but is readily removed in the acid deprotection and resin‐cleavage step. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
998.
In real-time quantitative PCR, the accuracy of normalized data is highly dependent on the stability of the reference genes. However, reference gene expression in a given cell type or experimental condition can vary considerably. The goal of this study was to establish a reliable set of reference genes for real-time PCR studies using human umbilical cord mesenchymal stem cells with long-term in vitro expansion. The stability of ten potential reference genes was examined in human umbilical cord mesenchymal stem cells. We found that Ywhaz and Rpl13a, not beta-actin or Gapdh, were the most stably expressed of the internal control genes in different passages of human umbilical cord mesenchymal stem cells. Ywhaz and Rpl13a could be used as reference genes for relative gene quantification and normalization purposes in real-time PCR studies of human umbilical cord mesenchymal stem cells.  相似文献   
999.
Ren K  Dubner R 《Nature medicine》2010,16(11):1267-1276
Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated network that coordinates immune responses and modulates the excitability of pain pathways. The immune system also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents. A greater understanding of the role of the immune system in pain processing and modulation reveals potential targets for analgesic drug development and new therapeutic opportunities for managing chronic pain.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号