首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3280篇
  免费   154篇
  国内免费   1篇
  2021年   19篇
  2018年   26篇
  2017年   34篇
  2016年   50篇
  2015年   76篇
  2014年   72篇
  2013年   124篇
  2012年   140篇
  2011年   141篇
  2010年   94篇
  2009年   57篇
  2008年   133篇
  2007年   120篇
  2006年   111篇
  2005年   123篇
  2004年   128篇
  2003年   114篇
  2002年   120篇
  2001年   67篇
  2000年   61篇
  1999年   65篇
  1998年   26篇
  1997年   27篇
  1996年   34篇
  1995年   45篇
  1994年   38篇
  1993年   33篇
  1992年   66篇
  1991年   68篇
  1990年   63篇
  1989年   62篇
  1988年   50篇
  1987年   50篇
  1986年   50篇
  1985年   63篇
  1984年   56篇
  1983年   41篇
  1982年   43篇
  1981年   42篇
  1980年   31篇
  1979年   37篇
  1978年   33篇
  1977年   40篇
  1976年   20篇
  1975年   29篇
  1974年   32篇
  1973年   26篇
  1971年   17篇
  1970年   13篇
  1969年   13篇
排序方式: 共有3435条查询结果,搜索用时 15 毫秒
961.
962.
Although retrovirus egress and budding have been partly unraveled, little is known about early stages of the replication cycle. In particular, retroviral uncoating, a process during which incoming retroviral cores are altered to allow the integration of the viral genome into host chromosomes, is poorly understood. To get insights into these early events of the retroviral cycle, we have used foamy complex retroviruses as a model. In this report, we show that a protease-defective foamy retrovirus is noninfectious, although it is still able to bud and enter target cells efficiently. Similarly, a retrovirus mutated in an essential viral protease-dependent cleavage site in the central part of Gag is noninfectious. Following entry, wild-type and mutant retroviruses are able to traffic along microtubules towards the microtubule-organizing center (MTOC). However, whereas nuclear import of Gag and of the viral genome was observed for the wild-type virus as early as 8 hours postinfection, incoming capsids and genome from mutant viruses remained at the MTOC. Interestingly, a specific viral protease-dependent Gag cleavage product was detected only for the wild-type retrovirus early after infection, demonstrating that cleavage of Gag by the viral protease at this stage of the virus life cycle is absolutely required for productive infection, an unprecedented observation among retroviruses.  相似文献   
963.
The nucleoid-associated protein H-NS is thought to play an essential role in the organization of bacterial chromatin in Escherichia coli. Homologues, often with very low sequence identity, are found in most gram-negative bacteria. Microscopic analysis reveals that, despite limited sequence identity, their structural organization results in similar DNA binding properties.  相似文献   
964.
Faithful propagation of eukaryotic chromosomes usually requires that no DNA segment be replicated more than once during one cell cycle. Cyclin-dependent kinases (Cdks) are critical for the re-replication controls that inhibit the activities of components of the pre-replication complexes (pre-RCs) following origin activation. The origin recognition complex (ORC) initiates the assembly of pre-RCs at origins of replication and Cdk phosphorylation of ORC is important for the prevention of re-initiation. Here we show that Drosophila melanogaster ORC (DmORC) is phosphorylated in vivo and is a substrate for Cdks in vitro. Cdk phosphorylation of DmORC subunits DmOrc1p and DmOrc2p inhibits the intrinsic ATPase activity of DmORC without affecting ATP binding to DmOrc1p. Moreover, Cdk phosphorylation inhibits the ATP-dependent DNA-binding activity of DmORC in vitro, thus identifying a novel determinant for DmORC-DNA interaction. DmORC is a substrate for both Cdk2 x cyclin E and Cdk1 x cyclin B in vitro. Such phosphorylation of DmORC by Cdk2 x cyclin E, but not by Cdk1 x cyclin B, requires an "RXL" motif in DmOrc1p. We also identify casein kinase 2 (CK2) as a kinase activity in embryonic extracts targeting DmORC for modification. CK2 phosphorylation does not affect ATP hydrolysis by DmORC but modulates the ATP-dependent DNA-binding activity of DmORC. These results suggest molecular mechanisms by which Cdks may inhibit ORC function as part of re-replication control and show that DmORC activity may be modulated in response to phosphorylation by multiple kinases.  相似文献   
965.
Among Biomphalaria glabrata/Schistosoma mansoni snail-trematode combinations, it appears that some parasites succeed whilst others fail to infect snails. Snails that become infected are termed susceptible hosts. Those which are not infected are traditionally determined as 'resistant'. Here the concept of B. glabrata resistance to S. mansoni is re-examined in the light of additional observations. It is suggested that, in B. glabrata/S. mansoni, compatibility is tested independently for each individual miracidium and host, and that the success or failure of an infection does not depend on the snail susceptibility/resistance status, but on the 'matched' or 'mismatched' status of the host and parasite phenotypes.  相似文献   
966.
The extracellular matrix guides the orientation of the cell division axis   总被引:5,自引:0,他引:5  
The cell division axis determines the future positions of daughter cells and is therefore critical for cell fate. The positioning of the division axis has been mostly studied in systems such as embryos or yeasts, in which cell shape is well defined. In these cases, cell shape anisotropy and cell polarity affect spindle orientation. It remains unclear whether cell geometry or cortical cues are determinants for spindle orientation in mammalian cultured cells. The cell environment is composed of an extracellular matrix (ECM), which is connected to the intracellular actin cytoskeleton via transmembrane proteins. We used micro-contact printing to control the spatial distribution of the ECM on the substrate and demonstrated that it has a role in determining the orientation of the division axis of HeLa cells. On the basis of our analysis of the average distributions of actin-binding proteins in interphase and mitosis, we propose that the ECM controls the location of actin dynamics at the membrane, and thus the segregation of cortical components in interphase. This segregation is further maintained on the cortex of mitotic cells and used for spindle orientation.  相似文献   
967.
We investigate the enzymatic activity of glucoamylase and beta-glucosidase adsorbed on a novel type of colloidal particles. The particles used consist of a poly(styrene) core onto which long chains of poly(acrylic acid) or of poly(styrene sulfonic acid) are grafted ("spherical polyelectrolyte brush"). Proteins adsorb spontaneously onto these particles from aqueous solutions if the ionic strength is low. Moreover, the colloidal stability is not impeded by the adsorbed proteins despite the fact that up to 600 mg of enzyme is adsorbed per gram of the carrier particles. The activity of immobilized glucoamylase and beta-glucosidase adsorbed onto these particles is analyzed in terms of the Michaelis-Menten parameters. This analysis shows that both enzymes keep nearly their full activity. The Michaelis constant K(M) differs only slightly from the K(M) value of the native enzyme when the amount of adsorbed enzyme is raised despite the high local concentration of immobilized enzymes. All data demonstrate that spherical polyelectrolyte brushes present a novel way to immobilize enzymes.  相似文献   
968.
Diseases of the cornea are extremely common and cause severe visual impairment worldwide. To explore the basic molecular mechanisms involved in corneal health and disease, the present study characterizes the proteome of the normal human cornea. All proteins were extracted from the central 7-mm region of 12 normal human donor corneas containing all layers: epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. Proteins were fractionated and identified using two different procedures: (i) two-dimensional gel electrophoresis and protein identification by MALDI-MS and (ii) strong cation exchange or one-dimensional SDS gel electrophoresis followed by LC-MS/MS. All together, 141 distinct proteins were identified of which 99 had not previously been identified in any mammalian corneas by direct protein identification methods. The characterized proteins are involved in many processes including antiangiogenesis, antimicrobial defense, protection from and transport of heme and iron, tissue protection against UV radiation and oxidative stress, cell metabolism, and maintenance of intracellular and extracellular structures and stability. This proteome study of the healthy human cornea provides a basis for further analysis of corneal diseases and the design of bioengineered corneas.  相似文献   
969.
970.
p21-activated kinase (PAK) has been shown to be an upstream mediator of JNK in angiotensin II (AngII) signaling. Little is known regarding other signaling molecules involved in activation of PAK and JNK by AngII. Rho family GTPases Rac and Cdc42 have been shown to enhance PAK activity by binding to p21-binding domain of PAK (PAK-PBD). In vascular smooth muscle cells (VSMC) AngII stimulated Rac1 binding to GST-PAK-PBD fusion protein. Pretreatment of VSMC by genistein inhibited AngII-induced Rac1 activation, whereas Src inhibitor PP1 had no effect. Inhibition of protein kinase C by phorbol 12,13-dibutyrate pretreatment also decreased AngII-mediated activation of Rac1. The adaptor molecule Nck has been shown previously to mediate PAK activation by facilitating translocation of PAK to the plasma membrane. In VSMC AngII stimulated translocation of Nck and PAK to the membrane fraction. Overexpression of dominant-negative Nck in Chinese hamster ovary (CHO) cells, stably expressing the AngII type I receptor (CHO-AT1), inhibited both PAK and JNK activation by AngII, whereas it did not affect ERK1/2. Finally, dominant-negative Nck inhibited AngII-induced DNA synthesis in CHO-AT1 cells. Our data provide evidence for Rac1 and Nck as upstream mediators of PAK and JNK in AngII signaling and implicate JNK in AngII-induced growth responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号