首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   14篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   12篇
  2015年   21篇
  2014年   14篇
  2013年   22篇
  2012年   18篇
  2011年   12篇
  2010年   8篇
  2009年   7篇
  2008年   7篇
  2007年   11篇
  2006年   6篇
  2005年   14篇
  2004年   3篇
  2003年   11篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1991年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1968年   1篇
  1967年   1篇
  1960年   1篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
201.
Interleukin-12 (IL-12), an important cytokine in host defense against microbial pathogens, regulates natural killer and T-cell function(s) including the induction of gamma-interferon production. The major cellular sources of IL-12 are monocytes/macrophages. Bacteria, bacterial products, and intracellular parasites are the most efficient inducers of IL-12 production. In the present study we show that a signal transduction pathway sensitive to rapamycin may have an important role in the regulation/suppression of Staphylococcus aureus-induced IL-12 production in vitro. Human peripheral blood mononuclear cells, monocytes, or a human monocytic cell line THP-1 were stimulated with S. aureus Cowan strain 1 (SAC) in the presence or absence of rapamycin and investigated for production of IL-12 protein by enzyme-linked immunosorbent assay and IL-12 p40 mRNA accumulation by RNase protection assay or real-time quantitative polymerase chain reaction. The results show that rapamycin significantly enhances SAC-induced IL-12 p70 protein production and IL-12 p40 mRNA accumulation. Further the results demonstrate that wortmannin enhances SAC-induced IL-12 p40 mRNA accumulation, whereas Ly294002 does not. These data indicate that a rapamycin-sensitive signaling pathway may act as a negative feedback cascade in the regulatory mechanisms of IL-12 production.  相似文献   
202.
203.
Insulin-like growth factor I (IGF-I) has been previously shown to promote survival of oligodendrocyte progenitors; however, the underlying mechanisms are not fully understood. Our aim was to investigate the involvement of phosphatidylinositol 3-kinase (PI3K), MEK1, and Src family tyrosine kinases in IGF-I-mediated oligodendrocyte progenitor survival. In agreement with previous studies, IGF-I promoted cell survival. We show that IGF-I prevented apoptosis induced by growth factor deprivation in a PI3K-dependent and MEK/ERK-independent manner. In addition, IGF-I activated Akt while inhibiting caspase-3 activation, and these effects were reversed by the PI3K inhibitors LY 294002 and wortmannin, but not by the MEK1 inhibitor PD 98059. Interestingly, PP2, a specific Src-like kinase inhibitor, blocked the tyrosine phosphorylation of Src, Fyn, and Lyn and IGF-I-stimulated Akt activation, yet had no significant effects on caspase-3 activation or progenitor survival. To further determine whether Akt is required for IGF-I-mediated survival, oligodendrocyte progenitors were transduced with defective Akt mutants or treated with an Akt inhibitor. Although the Akt mutants and inhibitor decreased Akt activity and reduced basal cell survival, IGF-I could partially rescue oligodendrocyte progenitors by decreasing caspase-3 activation. These results suggest that 1) PI3K is essential for IGF-I-promoted cell survival, 2) downstream activation of Akt-dependent and -independent pathways is involved, and 3) Src-like tyrosine kinases participate in IGF-I-induced Akt activation. Therefore, an unidentified effector(s) of PI3K appears to be involved in conferring complete IGF-I-mediated protection of oligodendrocyte progenitors.  相似文献   
204.
Dumont Y  Chabot JG  Quirion R 《Peptides》2004,25(3):365-391
Over the past 20 years, receptor autoradiography has proven most useful to provide clues as to the role of various families of peptides expressed in the brain. Early on, we used this method to investigate the possible roles of various brain peptides. Natriuretic peptide (NP), neuropeptide Y (NPY) and calcitonin (CT) peptide families are widely distributed in the peripheral and central nervous system and induced multiple biological effects by activating plasma membrane receptor proteins. The NP family includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). The NPY family is composed of at least three peptides NPY, peptide YY (PYY) and the pancreatic polypeptides (PPs). The CT family includes CT, calcitonin gene-related peptide (CGRP), amylin (AMY), adrenomedullin (AM) and two newly isolated peptides, intermedin and calcitonin receptor-stimulating peptide (CRSP). Using quantitative receptor autoradiography as well as selective agonists and antagonists for each peptide family, in vivo and in vitro assays revealed complex pharmacological responses and radioligand binding profile. The existence of heterogeneous populations of NP, NPY and CT/CGRP receptors has been confirmed by cloning. Three NP receptors have been cloned. One is a single-transmembrane clearance receptor (NPR-C) while the other two known as CG-A (or NPR-A) and CG-B (or NPR-B) are coupled to guanylate cyclase. Five NPY receptors have been cloned designated as Y(1), Y(2), Y(4), Y(5) and y(6). All NPY receptors belong to the seven-transmembrane G-protein coupled receptors family (GPCRs; subfamily type I). CGRP, AMY and AM receptors are complexes which include a GPCR (the CT receptor or CTR and calcitonin receptor-like receptor or CRLR) and a single-transmembrane domain protein known as receptor-activity-modifying-proteins (RAMPs) as well as an intracellular protein named receptor-component-protein (RCP). We review here tools that are currently available in order to target each NP, NPY and CT/CGRP receptor subtype and establish their respective pathophysiological relevance.  相似文献   
205.
206.

Aims

Metabolic syndrome induces cardiac dysfunction associated with mitochondria abnormalities. As low levels of carbon monoxide (CO) may improve myocardial and mitochondrial activities, we tested whether a CO-releasing molecule (CORM-3) reverses metabolic syndrome-induced cardiac alteration through changes in mitochondrial biogenesis, dynamics and autophagy.

Methods and Results

Mice were fed with normal diet (ND) or high-fat diet (HFD) for twelve weeks. Then, mice received two intraperitoneal injections of CORM-3 (10 mg.kg−1), with the second one given 16 hours after the first. Contractile function in isolated hearts and mitochondrial parameters were evaluated 24 hours after the last injection. Mitochondrial population was explored by electron microscopy. Changes in mitochondrial dynamics, biogenesis and autophagy were assessed by western-blot and RT-qPCR. Left ventricular developed pressure was reduced in HFD hearts. Mitochondria from HFD hearts presented reduced membrane potential and diminished ADP-coupled respiration. CORM-3 restored both cardiac and mitochondrial functions. Size and number of mitochondria increased in the HFD hearts but not in the CORM-3–treated HFD group. CORM-3 modulated HFD-activated mitochondrial fusion and biogenesis signalling. While autophagy was not activated in the HFD group, CORM-3 increased the autophagy marker LC3-II. Finally, ex vivo experiments demonstrated that autophagy inhibition by 3-methyladenine abolished the cardioprotective effects of CORM-3.

Conclusion

CORM-3 may modulate pathways controlling mitochondrial quality, thus leading to improvements of mitochondrial efficiency and HFD-induced cardiac dysfunction.  相似文献   
207.
Population fluctuations are often driven by an interplay between intrinsic population processes and extrinsic environmental forcing. To investigate this interplay, we analyzed fluctuations in coastal phytoplankton concentration in relation to the tidal cycle. Time series of chlorophyll fluorescence, suspended particulate matter (SPM), salinity and temperature were obtained from an automated measuring platform in the southern North Sea, covering 9 years of data at a resolution of 12 to 30 minutes. Wavelet analysis showed that chlorophyll fluctuations were dominated by periodicities of 6 hours 12 min, 12 hours 25 min, 24 hours and 15 days, which correspond to the typical periodicities of tidal current speeds, the semidiurnal tidal cycle, the day-night cycle, and the spring-neap tidal cycle, respectively. During most of the year, chlorophyll and SPM fluctuated in phase with tidal current speed, indicative of alternating periods of sinking and vertical mixing of algal cells and SPM driven by the tidal cycle. Spring blooms slowly built up over several spring-neap tidal cycles, and subsequently expanded in late spring when a strong decline of the SPM concentration during neap tide enabled a temporary “escape” of the chlorophyll concentration from the tidal mixing regime. Our results demonstrate that the tidal cycle is a major determinant of phytoplankton fluctuations at several different time scales. These findings imply that high-resolution monitoring programs are essential to capture the natural variability of phytoplankton in coastal waters.  相似文献   
208.

Background

Single embryo transfer (SET) is the most successful way to reduce the frequency of multiple pregnancies following in vitro fertilisation. However, selecting the embryo for SET with the highest chances of pregnancy remains a difficult challenge since morphological and kinetics criteria provide poor prediction of both developmental and implantation ability. Partly through the expression of specific genes, the oocyte-cumulus interaction helps the oocyte to acquire its developmental competence. Our aim was therefore to identify at the level of cumulus cells (CCs) genes related to oocyte developmental competence.

Methodology/Principal Findings

197 individual CCs were collected from 106 patients undergoing an intra-cytoplasmic sperm injection procedure. Gene expression of CCs was studied using microarray according to the nuclear maturity of the oocyte (immature vs. mature oocyte) and to the developmental competence of the oocyte (ability to reach the blastocyst stage after fertilisation). Microarray study was followed by a meta-analysis of the behaviour of these genes in other datasets available in Gene Expression Omnibus which showed the consistency of this list of genes. Finally, 8 genes were selected according to oocyte developmental competence from the 308 differentially expressed genes (p<0.0001) for further validation by quantitative PCR (qPCR). Three of these 8 selected genes were validated as potential biomarkers (PLIN2, RGS2 and ANG). Experimental factors such as inter-patient and qPCR series variability were then assessed using the Generalised Linear Mixed Model procedure, and only the expression level of RGS2 was confirmed to be related to oocyte developmental competence. The link between biomarkers and pregnancy was finally evaluated and level of RGS2 expression was also correlated with clinical pregnancy.

Conclusion/Significance

RGS2, known as a regulator of G protein signalling, was the only gene among our 8 selected candidates biomarkers of oocyte competence to cover many factors of variability, including inter-patient factors and experimental conditions.  相似文献   
209.
210.
Body condition is an important determinant of fitness in many natural populations. However, as for many fitness traits, the underlying genes that regulate body condition remain elusive. The dopamine receptor D4 gene (DRD4) is a promising candidate as dopamine is known to play an important role in the regulation of food intake and the metabolism of both glucose and lipids in vertebrates. In this study, we take advantage of a large data set of greater flamingos, Phoenicopterus roseus, to test whether DRD4 polymorphism predicts early body condition (EBC) while controlling for whole-genome effects of inbreeding and outbreeding using microsatellite multilocus heterozygosity (MLH). We typed 670 of these individuals for exon 3 of the homologue of the human DRD4 gene and 10 microsatellite markers. When controlling for the effects of yearly environmental variations and differences between sexes, we found strong evidence of an association between exon 3 DRD4 polymorphisms and EBC, with 2.2-2.3% of the variation being explained by DRD4 polymorphism, whereas there was only weak evidence that MLH predicts EBC. Because EBC is most likely a polygenic trait, this is a considerable amount of variation explained by a single gene. This is to our knowledge, the first study to show an association between exon 3 DRD4 polymorphism and body condition in non-human animals. We anticipate that the DRD4 gene as well as other genes coding for neurotransmitters and their receptors may play an important role in explaining variation in traits that affect fitness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号