首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1993年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
21.
Levels of the obese gene product leptin are often elevated in obesity and may contribute to obesity-induced cardiovascular complications. However, the role of leptin in obesity-associated cardiac abnormalities has not been clearly defined. This study was designed to determine the influence of high-fat diet-induced obesity on cardiac contractile response of leptin. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix system in cardiomyocytes from adult rats fed low- and high-fat diets for 12 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were examined including peak shortening, duration and maximal velocity of shortening/relengthening (TPS/TR(90), +/-dl/dt), Fura-2-fluorescence intensity change (DeltaFFI), and intracellular Ca(2+) decay rate (tau). Expression of the leptin receptor (Ob-R) was evaluated by western blot analysis. High-fat diet increased systolic blood pressure and plasma leptin levels. PS and +/-dl/dt were depressed whereas TPS and TR(90) were prolonged after high-fat diet feeding. Leptin elicited a concentration-dependent (0-1,000 nmol/l) inhibition of PS, +/-dl/dt, and DeltaFFI in low-fat but not high-fat diet-fed rat cardiomyocytes without affecting TPS and TR(90). The Janus kinase 2 (JAK2) inhibitor AG490, the mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nitric oxide synthase (NOS) inhibitor L-NAME abrogated leptin-induced cardiomyocyte contractile response in low-fat diet group without affecting the high-fat diet group. High-fat diet significantly downregulated cardiac expression of Ob-R. Elevation of extracellular Ca(2+) concentration nullified obesity-induced cardiomyocyte mechanical dysfunction and leptin-induced depression in PS. These data indicate presence of cardiac leptin resistance in diet-induced obesity possibly associated with impaired leptin receptor signaling.  相似文献   
22.

Background

Childhood acute lymphoblastic leukemia (ALL) is the most common cancer in children, and can now be cured in approximately 80% of patients. Nevertheless, drug resistance is the major cause of treatment failure in children with ALL. The drug methotrexate (MTX), which is widely used to treat many human cancers, is used in essentially all treatment protocols worldwide for newly diagnosed ALL. Although MTX has been extensively studied for many years, relatively little is known about mechanisms of de novo resistance in primary cancer cells, including leukemia cells. This lack of knowledge is due in part to the fact that existing in vitro methods are not sufficiently reliable to permit assessment of MTX resistance in primary ALL cells. Therefore, we measured the in vivo antileukemic effects of MTX and identified genes whose expression differed significantly in patients with a good versus poor response to MTX.

Methods and Findings

We utilized measures of decreased circulating leukemia cells of 293 newly diagnosed children after initial “up-front” in vivo MTX treatment (1 g/m2) to elucidate interpatient differences in the antileukemic effects of MTX. To identify genomic determinants of these effects, we performed a genome-wide assessment of gene expression in primary ALL cells from 161 of these newly diagnosed children (1–18 y). We identified 48 genes and two cDNA clones whose expression was significantly related to the reduction of circulating leukemia cells after initial in vivo treatment with MTX. This finding was validated in an independent cohort of children with ALL. Furthermore, this measure of initial MTX in vivo response and the associated gene expression pattern were predictive of long-term disease-free survival (p < 0.001, p = 0.02).

Conclusions

Together, these data provide new insights into the genomic basis of MTX resistance and interpatient differences in MTX response, pointing to new strategies to overcome MTX resistance in childhood ALL.Trial registrations: Total XV, Therapy for Newly Diagnosed Patients With Acute Lymphoblastic Leukemia, http://www.ClinicalTrials.gov (NCT00137111); Total XIIIBH, Phase III Randomized Study of Antimetabolite-Based Induction plus High-Dose MTX Consolidation for Newly Diagnosed Pediatric Acute Lymphocytic Leukemia at Intermediate or High Risk of Treatment Failure (NCI-T93-0101D); Total XIIIBL, Phase III Randomized Study of Antimetabolite-Based Induction plus High-Dose MTX Consolidation for Newly Diagnosed Pediatric Acute Lymphocytic Leukemia at Lower Risk of Treatment Failure (NCI-T93-0103D).  相似文献   
23.
Objective: High‐fat and marginally copper‐deficient diets impair heart function, leading to cardiac hypertrophy, increased lipid droplet volume, and compromised contractile function, resembling lipotoxic cardiac dysfunction. However, the combined effect of the two on cardiac function is unknown. This study was designed to examine the interaction between high‐fat and marginally copper‐deficient diets on cardiomyocyte contractile function. Research Methods and Procedures: Weanling male rats were fed diets incorporating a low‐ or high‐fat diet (10% or 45% of kcal from fat, respectively) with adequate (6 mg/kg) or marginally deficient (1.5 mg/kg) copper content for 12 weeks. Contractile function was determined with an IonOptix system including peak shortening (PS), time‐to‐PS, time‐to‐90% relengthening, maximal velocity of shortening/relengthening, and intracellular Ca2+ ([Ca2+]I) rise and decay. Results: Neither dietary treatment affected blood pressure or glucose levels, although the high‐fat diet elicited obesity and glucose intolerance. Both diets depressed PS, maximal velocity of shortening/relengthening, and intracellular Ca2+ ([Ca2+]I) rise and prolonged time‐to‐90% relengthening and Ca2+ decay without an additive effect between the two. Ca2+ sensitivity, apoptosis, lipid peroxidation, nitrosative damage, tissue ceramide, and triglyceride levels were unaffected by either diet or in combination. Phospholamban (PLB) but not sarco(endo)plasmic reticulum Ca2+‐ATPase was increased by both diets. Endothelial NO synthase was depressed with concurrent treatments. The electron transport chain was unaffected, although mitochondrial aconitase activity was inhibited by the high‐fat diet. Discussion: These data suggest that high‐fat and marginally copper deficient diets impaired cardiomyocyte contractile function and [Ca2+]i homeostasis, possibly through a similar mechanism, without obvious lipotoxicity, nitrosative damage, and apoptosis.  相似文献   
24.
Etoposide, a highly active and widely used antineoplastic agent, is O-demethylated to its active catechol metabolite. A high-performance liquid chromatographic assay method for the simultaneous quantitation of etoposide and etoposide catechol in human plasma was established. Etoposide and etoposide catechol were extracted from plasma using chloroform and methanol followed by phase separation, evaporation of the organic phase, and reconstitution of the residue. Chromatography was accomplished using a reversed-phase phenyl analytical column (390 mm×3.9 mm I.D.) with a mobile phase of 76.6% 25 mM citric acid–50 mM sodium phosphate (pH 2.4)–23.4% acetonitrile pumped isocratically at 1 ml/min with electrochemical detection. The limit of detection for etoposide was 1.2 nM and for etoposide catechol was 0.2 nM. The precision (CV) for etoposide ranged from 0.7 to 3% and for the catechol metabolite from 1 to 6%; accuracy of predicted values ranged from 97 to 106% and 94 to 103%, respectively. The assay was linear from 0.1 to 10 μM for etoposide and from 0.005 to 0.5 μM for etoposide catechol in plasma. Recovery of etoposide and etoposide catechol ranged from 93 to 95% and 90 to 98%, respectively. Stability of etoposide and etoposide catechol in human plasma containing ascorbic acid stored at −70°C for one year was demonstrated. This assay procedure is suitable for evaluation of etoposide and etoposide catechol pharmacokinetics in plasma following etoposide administration.  相似文献   
25.
26.
Elevated homocysteine concentrations have been associated with methotrexate-induced neurotoxicity. Based on methotrexate and homocysteine plasma concentrations of 494 children with acute lymphoblastic leukemia treated with high-dose methotrexate in the TOTAL XV study, a pharmacokinetic/pharmacodynamic (PK/PD) model was built with NONMEM. Several compartment and indirect response models were investigated. The pharmacokinetic disposition of methotrexate was best described by a two-compartment model. Homocysteine concentrations were included by an indirect response model where methotrexate inhibition of the homocysteine elimination rate was described by an Emax model. The homocysteine baseline level was found to be age-dependent. Simulations revealed that folinate rescue therapy does not affect peak concentrations of homocysteine but leads to a modestly reduced homocysteine exposure. In conclusion, our PK/PD model describes the increase of methotrexate-induced HCY concentrations with satisfactory precision and can be applied to assess the effect of folinate regimens on the HCY concentration-time course.  相似文献   
27.
Ren J  Relling DP 《Peptides》2006,27(6):1415-1419
Uncorrected obesity is often accompanied by ventricular contractile dysfunction, elevation of the lipotoxic mediator ceramide and the obesity gene product leptin. Both ceramide and leptin participate in the regulation of cardiac function and are speculated to play roles in obesity-related cardiac dysfunctions. The purpose of this study was to examine the effect of ceramide on leptin-elicited cardiac contractile response. Adult rat left ventricular myocytes were incubated for 24 h with low (5 nM) or high (50 nM) concentration of leptin in the absence or presence of the active ceramide analog C2-dihydroceramide (25 microM). Contractile and intracellular Ca2+ properties were evaluated using an IonOptix MyoCam system including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), intracellular Ca2+ rise (Delta[Ca2+]) and intracellular Ca2+ decay. While ceramide did not elicit any effect on cell mechanics and intracellular Ca2+ transients, it sensitized leptin-induced effects on myocyte shortening and intracellular Ca2+ transients. In the absence of ceramide, 5 nM leptin had no effect on cell mechanics while 50 nM depressed PS, +/-dL/dt, Delta[Ca2+] and prolonged TR90. With ceramide co-incubation, 5 nM leptin depressed PS, +/-dL/dt, Delta[Ca2+] and prolonged TR90 whereas 50 nM leptin-elicited effects on PS, +/-dL/dt, Delta[Ca2+] and TR90 were significantly potentiated in addition to slowing intracellular Ca2+ decay. In summary, our data demonstrated that ceramide sensitizes cardiac depressive effects of leptin and may contribute to hyperleptinemia-related cardiac contractile dysfunction.  相似文献   
28.
As cure rates in childhood acute lymphoblastic leukemia reach 80%, emphasis is increasingly placed on the accurate identification of drug-resistant cases, the elucidation of the mechanisms involved in drug resistance and the development of new therapeutic strategies targeted toward the pivotal molecular lesions. Pharmacodynamic and pharmacogenomic studies have provided rational criteria for individualizing therapy to enhance efficacy and reduce acute toxicity and late sequelae. Currently, assessment of the early response to treatment by measurement of minimal residual disease (MRD) is the most powerful independent prognostic indicator. MRD is affected by both the drug sensitivity of leukemic cells and the pharmacodynamic and pharmacogenetic properties of the host cells. Rapid advances in biotechnology and bioinformatics should ultimately facilitate the development of molecular diagnostic assays that can be used to optimize antileukemic therapy and elucidate the mechanisms of leukemogenesis. In the interim, prospective clinical trials have provided valuable clues that are further increasing the cure rate of childhood acute lymphoblastic leukemia.  相似文献   
29.
Treatment of SARS-CoV-2 targeting its RNA dependent RNA polymerase (RdRp) is of current interest. Remdesivir has been approved for the treatment of COVID-19 around the world. However, the drug has been linked with pharmacological limitations like adverse effects and reduced efficiency. Nevertheless, recent advancements have depicted molnupiravir as an effective therapeutic agent to target the SARS-CoV-2 RdRp. The drug has cleared both in vitro and in vivo screening. It is in phase-III clinical trial. Nonetheless, there are no data on themolecular binding interaction of molnupiravir with RdRp. Therefore, it is of interest to report the binding interaction of molnupiravir using molecular docking. It is also of interest to show its stability during interaction using molecular dynamics and binding free energy calculations along with drug likeliness and pharmacokinetic properties in comparison with remdesivir.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号