Sixty five isolates of Vibrio harveyi were subjected to random amplified polymorphic DNA (RAPD)-PCR analysis and protein profiling to investigate the genetic variability among V. harveyi prevalent along the coast and also assess the discriminating ability of these two molecular methods. A total of 10 RAPD primers were assayed for their specificity in detecting V. harveyi, of which only two primers: PM3 and CRA25 were highly reproducible and found suitable for use in RAPD-PCR. The genetic diversity among V. harveyi isolates assessed by RAPD-PCR using PM3 primer yielded 35 different RAPD patterns which clustered the isolates into 15 groups at 72% similarity level. Similarly, RAPD-PCR with CRA25 clustered the 38 patterns into 10 groups at 74% similarity. The discriminatory index (D) value calculated for RAPD fingerprints generated with PM3 and CRA25 were 0.90 and 0.85, respectively. On the other hand, molecular typing of V. harveyi using whole cell proteins generated profiles that showed no major difference indicating the technique to be not useful in typing strains of this bacterium. However, a few of the isolates showed the presence of unique band of 28 kDa that needs to be further investigated to understand the role of the protein in disease process if any. 相似文献
High glucose causes increased matrix synthesis by glomerular mesangial cells and angiotensin II (Ang II) has been shown to mediate this effect of glucose. These studies investigate whether inhibition of Ang II formation can block high glucose-induced increase in mesangial matrix. Human mesangial cells were incubated with 25 mM glucose (HG) along with captopril, an ACE inhibitor, to block Ang II formation. In other experiments, cells were nucleofected with siRNA to knockdown angiotensinogen (Agt), the precursor of Ang II, and then exposed to high glucose. Captopril blocked high glucose-induced increase in Ang II levels in the cell media (extracellular) but failed to inhibit it in the cell lysate (intracellular). Moreover, captopril treatment did not block the stimulatory effect of high glucose on TGF-β1 and fibronectin. In contrast, knockdown of the Agt gene prevented high glucose-induced increase in both extracellular and intracellular Ang II levels, and was accompanied by normalization of TGF-β1 and fibronectin. These data suggest that intracellular Ang II may play an important role in the mediation of the high glucose effect on matrix and that ACE inhibitors may not be effective in blocking intracellular Ang II formation in mesangial cells. 相似文献
Microbial nitrilases are biocatalysts of interest and the enzyme produced using various inducers exhibits altered substrate
specificity, which is of great interest in bioprocess development. The aim of the present study is to investigate the nitrilase-producing
Alcaligenes faecalis MTCC 10757 (IICT-A3) for its ability to transform various nitriles in the presence of different inducers after optimization
of various parameters for maximum enzyme production and activity. The production of A. faecalis MTCC 10757 (IICT-A3) nitrilase was optimum with glucose (1.0%), acrylonitrile (0.1%) at pH 7.0. The nitrilase activity of
A. faecalis MTCC 10757 (IICT-A3) was optimum at 35 °C, pH 8.0 and the enzyme was stable up to 6 h at 50 °C. The nitrilase enzyme produced
using different inducers was investigated for substrate specificity. The enzyme hydrolyzed aliphatic, heterocyclic and aromatic
nitriles with different substitutions. Acrylonitrile was the most preferred substrate (~40 U) as well as inducer. Benzonitrile
was hydrolyzed with almost twofold higher relative activity than acrylonitrile when it was used as an inducer. The versatile
nitrilase-producing A. faecalis MTCC 10757 (IICT-A3) exhibits efficient conversion of both aliphatic and aromatic nitriles. The aromatic nitriles, which
show not much or no affinity towards nitrilase from A. faecalis, are hydrolyzed effectively with this nitrilase-producing organism. Studies are in progress to exploit this organism for
synthesis of industrially important compounds. 相似文献
Noninvasive sampling methods for studying intestinal microbiomes are widely applied in studies of endangered species and in those conducting temporal monitoring during manipulative experiments. Although existing studies show that noninvasive sampling methods among different taxa vary in their accuracy, no studies have yet been published comparing nonlethal sampling methods in adult amphibians. In this study, we compare microbiomes from two noninvasive sample types (faeces and cloacal swabs) to that of the large intestine in adult cane toads, Rhinella marina. We use 16S rRNA gene sequencing to investigate how microbial communities change along the digestive tract and which nonlethal sampling method better represents large intestinal microbiota. We found that cane toads' intestinal microbiota was dominated by Bacteroidetes, Proteobacteria and Firmicutes and, interestingly, we also saw a high proportion of Fusobacteria, which has previously been associated with marine species and changes in frog immunity. The large and small intestine of cane toads had a similar microbial composition, but the large intestine showed higher diversity. Our results indicate that cloacal swabs were more similar to large intestine samples than were faecal samples, and small intestine samples were significantly different from both nonlethal sample types. Our study provides valuable information for future investigations of the cane toad gut microbiome and validates the use of cloacal swabs as a nonlethal method to study changes in the large intestine microbiome. These data provide insights for future studies requiring nonlethal sampling of amphibian gut microbiota. 相似文献
Shrimp, water, and sediment samples were collected from various shrimp farms located in and around Cochin. V. parahaemolyticus was identified by standard biochemical tests and plasmid profiling was carried out for the isolates. Susceptibility was tested against 15 antibiotics before and after the plasmid curing. Incidence of V. parahaemolyticus was found in 46% of the samples screened. Antibiogram studies showed, above 50% of the strains sensitive to chlorotetracycline, chloramphenicol and nitrofurantoin. Multiple antibiotic resistance (MAR) index was found to be 0.2. Total presumptive Vibrio parahaemolyticus count (TPVPC) and resistance to antibiotics was found to be more in sediment samples particularly in pre-monsoon season. Plasmid profiles of V. parahaemolyticus isolates revealed seven plasmids in the size range of 0.75, 1.2, 6.0, and 8.0 kb sizes and 3 plasmids above 10.0 kb. The MAR index suggests the low risk potential involved in consuming seafoods. Resistance to antibiotics did not vary even after curing of plasmids with sodium dodecyl sulphate suggesting that resistance to antibiotics in V. parahaemolyticus is chromosomal borne. 相似文献
SFTI-1 is a small cyclic peptide from sunflower seeds that is one of the most potent trypsin inhibitors of any naturally occurring peptide and is related to the Bowman-Birk family of inhibitors (BBIs). BBIs are involved in the defense mechanisms of plants and also have potential as cancer chemopreventive agents. At only 14 amino acids in size, SFTI-1 is thought to be a highly optimized scaffold of the BBI active site region, and thus it is of interest to examine its important structural and functional features. In this study, a suite of 12 alanine mutants of SFTI-1 has been synthesized, and their structures and activities have been determined. SFTI-1 incorporates a binding loop that is clasped together with a disulfide bond and a secondary peptide loop making up the circular backbone. We show here that the secondary loop stabilizes the binding loop to the consequences of sequence variations. In particular, full-length BBIs have a conserved cis-proline that has been shown previously to be required for well defined structure and potent activity, but we show here that the SFTI-1 scaffold can accommodate mutation of this residue and still have a well defined native-like conformation and nanomolar activity in inhibiting trypsin. Among the Ala mutants, the most significant structural perturbation occurred when Asp14 was mutated, and it appears that this residue is important in stabilizing the trans peptide bond preceding Pro13 and is thus a key residue in maintaining the highly constrained structure of SFTI-1. This aspartic acid residue is thought to be involved in the cyclization mechanism associated with excision of SFTI-1 from its 58-amino acid precursor. Overall, this mutational analysis of SFTI-1 clearly defines the optimized nature of the SFTI-1 scaffold and demonstrates the importance of the secondary loop in maintaining the active conformation of the binding loop. 相似文献
Pomegranate (Punica granatum L.) has widely been used as a fruit and in folk medicine since ancient civilizations in the world. It is now known that bioactive compounds present in pomegranates attribute to its therapeutic potential. Harvesting at the correct maturity stage is one of the key factors deciding the quality of harvest for consumption in fresh or value-added forms. Identification of the correct maturity stage (harvesting index) is particularly difficult for cultivars having yellowish peel and pinkish arils (sarcotesta). We studied the changes in total phenolic content (TPC), antioxidant activity (AOX), punicalagin α and β contents, color indices, total soluble solids (TSS), and expression of anthocyanin biosynthetic pathway genes from flowering to harvesting in the pomegranate cultivar Nimali, having red flowers, yellow peels, and pinkish arils at maturity over two growing seasons. Interestingly, there was no seasonal variation observed in any of the parameters over two cultivation seasons. Although the β punicalagin content did not change, the TPC, AOX, punicalagin α contents in both peel and arils gradually decreased from flowering to maturity. Though the TPC of both peels and arils, AOX and total punicalagin content of peel did not change significantly 140 days after flower initiation, the TPC and the total punicalagin of arils reached a stable level at 160 days. The TSS in both peels and arils increased significantly with the maturity having the highest values at 180 days. The peel color changed from green to yellow with maturity with a significant increase in l* and b* values and significant decrease in a* value. Nevertheless, the aril color changed from pale white to pink with the maturity with significant reduction of l* and b* values and significant increase of a* value. Changes in pomegranate dihydroflavonol 4-reductase (DFR), flavanone 3-hydroxylase (F3H), and leucoanthocyanidin dioxygenase (anthocyanidin synthase-ANS) gene expression in Nimali arils correlated with its color changes during maturity. These findings support to identify the harvesting index of Nimali ensuring the maximum nutritional and health benefits of pomegranate flower, arils, and peels for different downstream uses.
In the present investigation, a microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated and identified as Bacillus subtilis strain LFS3 by 16S rDNA sequence analysis. The carboxymethylcellulase (CMCase) enzyme produced by the B. subtilis strain LFS3 was purified by (NH?)?SO? precipitation, ion exchange and gel filtration chromatography, with an overall recovery of 15 %. Native-PAGE analysis of purified CMCase revealed the molecular weight of enzyme to be about 185 kDa. The activity profile of CMCase enzyme showed the optimum activity at temperature 60 °C and pH 4.0, respectively. The enzyme activity was induced by Na?, Mg2?, NH??, and EDTA, whereas strongly inhibited by Hg2? and Fe3?. The purified enzyme hydrolyzed CMC, filter paper, and xylan, but not p-nitrophenyl β-D-glucopyranoside and cellulose. Kinetic analysis of purified enzyme showed the K(m) value of 2.2 mg/ml. Thus, acidophilic as well as thermophilic nature makes this cellulase a suitable candidate for current mainstream biomass conversion into fuel and other industrial processes. 相似文献
Oral administration of brahma rasayana (BR; 50 mg/animal for 10 and 30 days) significantly increased the liver antioxidant enzymes such as superoxide dismutase (SOD), catalase(CAT) and tissue and serum levels of reduced glutathione (GSH). Whole body irradiation suppressed the levels of SOD, CAT and GSH. Reduced activity of SOD, CAT and GSH was significantly elevated by treatment with BR after radiation treatment. Similarly radiation exposure induced increase in serum and liver lipid peroxides was significantly reduced by further treatment with BR. The results indicate that BR could ameliorate the oxidative damage produced in the body by radiation and may be useful as an adjuvant during radiation therapy. 相似文献