首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   19篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   3篇
  1973年   1篇
  1972年   3篇
  1971年   3篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1967年   3篇
  1960年   2篇
  1956年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
41.
Algorithms have been developed to allow two-dimensional abstractrepresentations of proteins based on: (i) a non-redundant subsetof codons, (ii) hydropathy values of amino acids, (iii) thepolarities of the amino acid residues and (iv) predicted secondarystructures. In addition the suggestion of Gates on nucleic acidrepresentation was implemented. The two-dimensional projections(signatures) that are obtained have the merit that several plotscan be represented simultaneously for ready visualization. Theapproach appears useful in showing relationships among groupsof proteins. Received on September 22, 1986; accepted on November 25, 1986  相似文献   
42.
43.
Biofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI), which represent the most frequent nosocomial infections. Knowledge of genetic factors for catheter colonization is limited, since their role has not been assessed using physicochemical conditions prevailing in a catheterized human bladder. The current study aimed to combine data from a dynamic catheterized bladder model in vitro with in vivo expression analysis for understanding molecular factors relevant for CAUTI caused by Escherichia coli. By application of the in vitro model that mirrors the physicochemical environment during human infection, we found that an E. coli K-12 mutant defective in type 1 fimbriae, but not isogenic mutants lacking flagella or antigen 43, was outcompeted by the wild-type strain during prolonged catheter colonization. The importance of type 1 fimbriae for catheter colonization was verified using a fimA mutant of uropathogenic E. coli strain CFT073 with human and artificial urine. Orientation of the invertible element (IE) controlling type 1 fimbrial expression in bacterial populations harvested from the colonized catheterized bladder in vitro suggested that the vast majority of catheter-colonizing cells (up to 88%) express type 1 fimbriae. Analysis of IE orientation in E. coli populations harvested from patient catheters revealed that a median level of ∼73% of cells from nine samples have switched on type 1 fimbrial expression. This study supports the utility of the dynamic catheterized bladder model for analyzing catheter colonization factors and highlights a role for type 1 fimbriae during CAUTI.  相似文献   
44.
Macromolecular transport by bacterial type IV secretion systems involves regulated uptake of (nucleo)protein complexes by the cell envelope-spanning transport channel. A coupling protein receptor is believed to recognize the specific proteins destined for transfer, but the steps initiating their translocation remain unknown. Here, we investigate the contribution of a complex of transfer initiation proteins, the relaxosome, of plasmid R1 to translocation of competing transferable substrates from mobilizable plasmids ColE1 and CloDF13 or the bacteriophage R17. We found that not only does the R1 translocation machinery engage the R1 relaxosome during conjugative self-transfer and during infection by R17 phage but it is also activated by its cognate relaxosome to mediate the export of an alternative plasmid. Transporter activity was optimized by the R1 relaxosome even when this complex itself could not be transferred, i.e., when the N-terminal activation domain (amino acids 1 to 992 [N1-992]) of TraI was present without the C-terminal conjugative helicase domain. We propose that the functional dependence of the transfer machinery on the R1 relaxosome for initiating translocation ensures that dissemination of heterologous plasmids does not occur at the expense of self-transfer.  相似文献   
45.
Endothelin-1 (ET-1) is an important contributor to ventricular hypertrophy and failure, which are associated with arrhythmogenesis and sudden death. To elucidate the mechanism(s) underlying the arrhythmogenic effects of ET-1 we tested the hypothesis that long-term (24 hrs) exposure to ET-1 impairs impulse conduction in cultures of neonatal rat ventricular myocytes (NRVM). NRVM were seeded on micro-electrode-arrays (MEAs, Multi Channel Systems, Reutlingen, Germany) and exposed to 50 nM ET-1 for 24 hrs. Hypertrophy was assessed by morphological and molecular methods. Consecutive recordings of paced activation times from the same cultures were conducted at baseline and after 3, 6 and 24 hrs, and activation maps for each time period constructed. Gap junctional Cx43 expression was assessed using Western blot and confocal microscopy of immunofluorescence staining using anti-Cx43 antibodies. ET-1 caused hypertrophy as indicated by a 70% increase in mRNA for atrial natriuretic peptide ( P < 0.05), and increased cell areas ( P < 0.05) compared to control. ET-1 also caused a time-dependent decrease in conduction velocity that was evident after 3 hrs of exposure to ET-1, and was augmented at 24 hrs, compared to controls ( P < 0.01). ET-1 increased total Cx43 protein by ∼40% ( P < 0.05) without affecting non- phosphorylated Cx43 (NP-Cx43) protein expression. Quantitative confocal microscopy showed a ∼30% decrease in the Cx43 immunofluorescence per field in the ET-1 group ( P < 0.05) and a reduced field stain intensity ( P < 0.05), compared to controls. ET-1-induced hypertrophy was accompanied by reduction in conduction velocity and gap junctional remodelling. The reduction in conduction velocity may play a role in ET-1 induced susceptibility to arrhythmogenesis.  相似文献   
46.
Urinary catheters are standard medical devices utilized in both hospital and nursing home settings, but are associated with a high frequency of catheter-associated urinary tract infections (CAUTI). In particular, biofilm formation on the catheter surface by uropathogens such as Klebsiella pneumoniae causes severe problems. Here we demonstrate that type 1 and type 3 fimbriae expressed by K.?pneumoniae enhance biofilm formation on urinary catheters in a catheterized bladder model that mirrors the physico-chemical conditions present in catheterized patients. Furthermore, we show that both fimbrial types are able to functionally compensate for each other during biofilm formation on urinary catheters. In situ monitoring of fimbrial expression revealed that neither of the two fimbrial types is expressed when cells are grown planktonically. Interestingly, during biofilm formation on catheters, both fimbrial types are expressed, suggesting that they are both important in promoting biofilm formation on catheters. Additionally, transformed into and expressed by a nonfimbriated Escherichia coli strain, both fimbrial types significantly increased biofilm formation on catheters compared with the wild-type E.?coli strain. The widespread occurrence of the two fimbrial types in different species of pathogenic bacteria stresses the need for further assessment of their role during urinary tract infections.  相似文献   
47.
Platinum(II)-based anticancer drugs play an essential role in the clinic today, and a number of coordination compounds with other metals are in current development as promising antitumor drugs. Probably the most prominent non-platinum metal-based drugs are those of ruthenium. Various strategies have been applied for the design of novel drugs with an improved toxicological profile, and one of them involves the preparation of metal complexes in inert high oxidation states [e.g. Pt(IV), Ru(III)]. Three platinum(IV) and two ruthenium(III) drugs have already reached clinical trials. Ideally, hypoxia-selective drugs are delivered to the target environment without prior reduction or major transformation via substitution reactions at the metal center. A (selective) reduction has been proposed to activate the prodrugs by formation of active species, which react with the target more readily and lead ultimately to apoptosis. Investigations on the electrochemical behavior of platinum(IV) and ruthenium(III) cytotoxins and the establishment of preliminary structure-property relationships are therefore of current importance. Herein, we present recent results in the field of metal-centered electron-transfer activated Ru(III), Pt(IV) and Co(III) drugs with regard to design and targeting strategies, prediction of redox potentials in aqueous medium, labilization and enhanced reactivity with potential biological targets upon reduction, and correlations between electrochemical parameters and anticancer activity.  相似文献   
48.
A method has been developed to stain rapidly protein zones not only in standard but also in isoelectric focusing polyacrylamide gels. It requires no destaining in either case. The technique makes use of the fact that the G250 form of Coomassie Brilliant Blue exhibits a color change in dilute perchloric acid which is reversed when the dye becomes bound to the protein. Under the conditions used, Ampholine shows little interference. In addition, the method selectively visualizes the arginine-rich histones because of the solubility of the lysine-rich histones in PCA.  相似文献   
49.
The relationship between intermembrane spacing, adhesion efficiency, and lateral organization of adhesion receptors has not been established for any adhesion system. We have utilized the CD2 ligand CD48 with two (wild type CD48 (CD48-WT)), four (CD48-CD2), or five (CD48-CD22) Ig-like domains. CD48-WT was 10-fold more efficient in mediating adhesion than CD48-CD2 or CD48-CD22. Electron tomography of contact areas with planar bilayers demonstrated average intermembrane spacing of 12.8 nm with CD48-WT, 14.7 nm with CD48-CD2, and 15.6 nm with CD48-CD22. Both CD48-CD2 and CD48-CD22 chimeras segregated completely from CD48-WT in mixed contact areas. In contrast, CD48-CD2 and CD48-CD22 co-localized when mixed contacts were formed. Confocal imaging of immunological synapses formed between primary T lymphocytes and Chinese hamster ovary cells presenting major histocompatibility complex-peptide complexes, and different forms of CD48 demonstrated that CD48-CD2 and CD48-CD22 induce an eccentric CD2/T cell antigen receptor cluster. We propose that this reorganization of the immunological synapse sequesters the T cell antigen receptor in a location where it cannot interact with its ligand and dramatically reduces T cell sensitivity.  相似文献   
50.
The cell lineage tree of a multicellular organism represents its history of cell divisions from the very first cell, the zygote. A new method for high-resolution reconstruction of parts of such cell lineage trees was recently developed based on phylogenetic analysis of somatic mutations accumulated during normal development of an organism. In this study we apply this method in mice to reconstruct the lineage trees of distinct cell types. We address for the first time basic questions in developmental biology of higher organisms, namely what is the correlation between the lineage relation among cells and their (1) function, (2) physical proximity and (3) anatomical proximity. We analyzed B-cells, kidney-, mesenchymal- and hematopoietic-stem cells, as well as satellite cells, which are adult skeletal muscle stem cells isolated from their niche on the muscle fibers (myofibers) from various skeletal muscles. Our results demonstrate that all analyzed cell types are intermingled in the lineage tree, indicating that none of these cell types are single exclusive clones. We also show a significant correlation between the physical proximity of satellite cells within muscles and their lineage. Furthermore, we show that satellite cells obtained from a single myofiber are significantly clustered in the lineage tree, reflecting their common developmental origin. Lineage analysis based on somatic mutations enables performing high resolution reconstruction of lineage trees in mice and humans, which can provide fundamental insights to many aspects of their development and tissue maintenance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号