首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   17篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   8篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   13篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1980年   2篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
31.
Porous silicon biosensor for detection of viruses   总被引:4,自引:0,他引:4  
There is a growing need for virus sensors with improved sensitivity and dynamic range, for applications including disease diagnosis, pharmaceutical research, agriculture and homeland security. We report here a new method for improving the sensitivity for detection of the bacteriophage virus MS2 using thin films of nanoporous silicon. Porous silicon is an easily fabricated material that has extremely high surface area to volume ratio, making it an ideal platform for surface based sensors. We have developed and evaluated two different methods for covalent bioconjugation of antibodies inside of porous silicon films, and we show that the pore penetration and binding efficiency depend on the wettability of the porous surface. The resulting films were used to selectively capture dye-labeled MS2 viruses from solution, and a viral concentration as low as 2 x 10(7) plaque-forming units per mL (pfu/mL) was detectable by measuring the fluorescence from the exposed porous silicon film. The system exhibits sensitivity and dynamic range similar to the Luminex liquid array-based assay while outperforming protein micro-array methods.  相似文献   
32.
Small cell lung cancer (SCLC) is a difficult disease to treat and sometimes has overexpression or mutation of c-Met receptor tyrosine kinase. The effects of c-Met/hepatocyte growth factor (c-Met/HGF, ligand for c-Met) on activation of reactive oxygen species (ROS) was determined. HGF stimulation of c-Met-overexpressing H69 SCLC cells (40 ng/ml, 15 min) resulted in an increase of ROS, measured with fluorescent probe 2'-7'-dichlorofluorescein diacetate (DCFH-DA) or dihydroethidine (DHE) but not in c-Met-null H446 cells. ROS was increased in juxtamembrane (JM)-mutated variants (R988C and T1010I) of c-Met compared with wild-type c-Met-expressing cells. ROS was significantly inhibited by preincubation of SCLC cells with pyrrolidine dithiocarbamate (PDTC, 100 microM) and/or SU11274 (small molecule c-Met tyrosine kinase inhibitor, 2 microM) for 3 h. PDTC and SU11274 also abrogated the HGF proliferative signal and cell motility in a cooperative fashion. H(2)O(2) treatment of SCLC cells (over 15 min) led to phosphorylation of c-Met receptor tyrosine kinase and further upregulated downstream phosphorylation of phospho-AKT, ERK1/2, and paxillin in a dose-dependent manner (125 microM to 500 microM). c-Met is an important target in lung cancer, and the pathways responsible for ROS generation together may provide novel therapeutic intervention.  相似文献   
33.
During inflammation polymorphonuclear neutrophils (PMNs) traverse venular walls, composed of the endothelium, pericyte sheath and vascular basement membrane. Compared to PMN transendothelial migration, little is known about how PMNs penetrate the latter barriers. Using mouse models and intravital microscopy, we show that migrating PMNs expand and use the low expression regions (LERs) of matrix proteins in the vascular basement membrane (BM) for their transmigration. Importantly, we demonstrate that this remodeling of LERs is accompanied by the opening of gaps between pericytes, a response that depends on PMN engagement with pericytes. Exploring how PMNs modulate pericyte behavior, we discovered that direct PMN-pericyte contacts induce relaxation rather than contraction of pericyte cytoskeletons, an unexpected response that is mediated by inhibition of the RhoA/ROCK signaling pathway in pericytes. Taking our in vitro results back into mouse models, we present evidence that pericyte relaxation contributes to the opening of the gaps between pericytes and to the enlargement of the LERs in the vascular BM, facilitating PMN extravasation. Our study demonstrates that pericytes can regulate PMN extravasation by controlling the size of pericyte gaps and thickness of LERs in venular walls. This raises the possibility that pericytes may be targeted in therapies aimed at regulating inflammation.  相似文献   
34.
In the yeast Saccharomyces cerevisiae, the G protein beta gamma subunits are essential for pheromone signaling. The Galpha subunit Gpa1 can also promote signaling, but the effectors in this pathway are not well characterized. To identify candidate Gpa1 effectors, we expressed the constitutively active Gpa1(Q323L) mutant in each of nearly 5000 gene-deletion strains and measured mating-specific responses. Our analysis reveals a requirement for both the catalytic (Vps34) and regulatory (Vps15) subunits of the sole phosphatidylinositol 3-kinase in yeast. We demonstrate that Gpa1 is present at endosomes, where it interacts directly with both Vps34 and Vps15 and stimulates increased production of phosphatidylinositol 3-phosphate. Notably, Vps15 binds to GDP-bound Gpa1 and is predicted to have a seven-WD repeat structure similar to that of known G protein beta subunits. These findings reveal two new components of the pheromone signaling pathway. More remarkably, these proteins appear to comprise a preformed effector-G beta subunit assembly and function at the endosome rather than at the plasma membrane.  相似文献   
35.
36.
Synthetic genetic array analyses identify powerful genetic interactions between a thermosensitive allele (sec14-1ts) of the structural gene for the major yeast phosphatidylinositol transfer protein (SEC14) and a structural gene deletion allele (tlg2Δ) for the Tlg2 target membrane-soluble N-ethylmaleimide-sensitive factor attachment protein receptor. The data further demonstrate Sec14 is required for proper trans-Golgi network (TGN)/endosomal dynamics in yeast. Paradoxically, combinatorial depletion of Sec14 and Tlg2 activities elicits trafficking defects from the endoplasmic reticulum, and these defects are accompanied by compromise of the unfolded protein response (UPR). UPR failure occurs downstream of Hac1 mRNA splicing, and it is further accompanied by defects in TOR signaling. The data link TGN/endosomal dynamics with ceramide homeostasis, UPR activity, and TOR signaling in yeast, and they identify the Sit4 protein phosphatase as a primary conduit through which ceramides link to the UPR. We suggest combinatorial Sec14/Tlg2 dysfunction evokes inappropriate turnover of complex sphingolipids in endosomes. One result of this turnover is potentiation of ceramide-activated phosphatase-mediated down-regulation of the UPR. These results provide new insight into Sec14 function, and they emphasize the TGN/endosomal system as a central hub for homeostatic regulation in eukaryotes.  相似文献   
37.
Cytochrome P450 enzymes catalyze a vast array of oxidative and reductive biotransformations that are potentially useful for industrial and pharmaceutical syntheses. Factors such as cofactor utilization and slow reaction rates for nonnatural substrates limit their large-scale usefulness. This paper reports several improvements that make the cytochrome P450cam enzyme system more practical for the epoxidation of styrene. NADH coupling was increased from 14 to 54 mol %, and product turnover rate was increased from 8 to 70 min(-1) by introducing the Y96F mutation to P450cam. Styrene and styrene oxide mass balance determinations showed different product profiles at low and high styrene conversion levels. For styrene conversion less than about 25 mol %, the stoichiometry between styrene consumption and styrene oxide formation was 1:1. At high styrene conversion, a second doubly oxidized product, alpha-hydroxyacetophenone, was formed. This was also the exclusive product when Y96F P450cam acted on racemic, commercially available styrene oxide. The alpha-hydroxyacetophenone product was suppressed in reactions where styrene was present at saturating concentrations. Finally, styrene epoxidation was carried out in an electroenzymatic reactor. In this scheme, the costly NADH cofactor and one of the three proteins (putidaredoxin reductase) are eliminated from the Y96F P450cam enzyme system.  相似文献   
38.
We describe a method to visualize green fluorescent protein (GFP)-labeled cells in intact organs through combined confocal and reflected laser light imaging. This method allows us a three-dimensional (3-D) view of specific cell types in situ. Imaging of tissues from transgenic mice in which the endothelial cells are labeled with GFP under the control of endothelial-specific tyrosine receptor kinase 2 (TIE2) shows the spatial distribution of the GFP-labeled endothelial cells in intact organs. We have used this method to examine the tissue necrosis in the intact heart and kidney resulting from myocardial and renal infarction. In myocardial infarction produced by surgically occluding the left anterior descending coronary artery, the border of the infarct was highly cellular and showed a disrupted endothelial network and scar tissue appearing as a dense layer of reflection. The induced renal infarction produced by ligating the renal artery in the pedicle showed a clear infarct border in the affected kidney. The 3-D reconstruction of specific cell types in the context of the surrounding tissues should be useful for studying the overall organization and the relationship between different structures in the intact organ in normal and disease states.  相似文献   
39.
There is good evidence supporting the view that the transjunctional voltage sensor (V(j)-sensor) of Cx32 and other Group 1 connexins is contained within a segment of the N-terminus that contributes to the formation of the channel pore. We have shown that the addition of negatively charged amino acid residues at several positions within the first 10 amino acid residues reverses the polarity of V(j)-gating and proposed that channel closure is initiated by the inward movement of this region. Here, we report that positive charge substitutions of the 2nd, 5th, and 8th residues maintain the negative polarity of V(j)-gating. These data are consistent with the original gating model. Surprisingly, some channels containing combinations of positive and/or negative charges at the 2nd and 5th positions display bipolar V(j)-gating. The appearance of bipolar gating does not correlate with relative orientation of charges at this position. However, the voltage sensitivity of bipolar channels correlates with the sign of the charge at the 2nd residue, suggesting that charges at this position may have a larger role in determining gating polarity. Taken together with previous findings, the results suggest that the polarity V(j)-gating is not determined by the sign of the charge lying closest to the cytoplasmic entry of the channel, nor is it likely to result from the reorientation of an electrical dipole contained in the N-terminus. We further explore the mechanism of polarity determination by utilizing the one-dimensional Poisson-Nernst-Plank model to determine the voltage profile of simple model channels containing regions of permanent charge within the channel pore. These considerations demonstrate how local variations in the electric field may influence the polarity and sensitivity of V(j)-gating but are unlikely to account for the appearance of bipolar V(j)-gating.  相似文献   
40.
Gap junction channel gating   总被引:8,自引:0,他引:8  
Over the last two decades, the view of gap junction (GJ) channel gating has changed from one with GJs having a single transjunctional voltage-sensitive (V(j)-sensitive) gating mechanism to one with each hemichannel of a formed GJ channel, as well as unapposed hemichannels, containing two, molecularly distinct gating mechanisms. These mechanisms are termed fast gating and slow or 'loop' gating. It appears that the fast gating mechanism is solely sensitive to V(j) and induces fast gating transitions between the open state and a particular substate, termed the residual conductance state. The slow gating mechanism is also sensitive to V(j), but there is evidence that this gate may mediate gating by transmembrane voltage (V(m)), intracellular Ca(2+) and pH, chemical uncouplers and GJ channel opening during de novo channel formation. A distinguishing feature of the slow gate is that the gating transitions appear to be slow, consisting of a series of transient substates en route to opening and closing. Published reports suggest that both sensorial and gating elements of the fast gating mechanism are formed by transmembrane and cytoplamic components of connexins among which the N terminus is most essential and which determines gating polarity. We propose that the gating element of the slow gating mechanism is located closer to the central region of the channel pore and serves as a 'common' gate linked to several sensing elements that are responsive to different factors and located in different regions of the channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号