首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   17篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   8篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   13篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1980年   2篇
排序方式: 共有95条查询结果,搜索用时 734 毫秒
21.
22.
The Drosophila retinal degeneration B (rdgB) gene encodes an integral membrane protein involved in phototransduction and prevention of retinal degeneration. RdgB represents a nonclassical phosphatidylinositol transfer protein (PITP) as all other known PITPs are soluble polypeptides. Our data demonstrate roles for RdgB in proper termination of the phototransduction light response and dark recovery of the photoreceptor cells. Expression of RdgB''s PITP domain as a soluble protein (RdgB-PITP) in rdgB2 mutant flies is sufficient to completely restore the wild-type electrophysiological light response and prevent the degeneration. However, introduction of the T59E mutation, which does not affect RdgB-PITP''s phosphatidylinositol (PI) and phosphatidycholine (PC) transfer in vitro, into the soluble (RdgB-PITP-T59E) or full-length (RdgB-T59E) proteins eliminated rescue of retinal degeneration in rdgB2 flies, while the light response was partially maintained. Substitution of the rat brain PITPα, a classical PI transfer protein, for RdgB''s PITP domain (PITPα or PITPα-RdgB chimeric protein) neither restored the light response nor maintained retinal integrity when expressed in rdgB2 flies. Therefore, the complete repertoire of essential RdgB functions resides in RdgB''s PITP domain, but other PITPs possessing PI and/or PC transfer activity in vitro cannot supplant RdgB function in vivo. Expression of either RdgB-T59E or PITPα-RdgB in rdgB + flies produced a dominant retinal degeneration phenotype. Whereas RdgB-T59E functioned in a dominant manner to significantly reduce steady-state levels of rhodopsin, PITPα-RdgB was defective in the ability to recover from prolonged light stimulation and caused photoreceptor degeneration through an unknown mechanism. This in vivo analysis of PITP function in a metazoan system provides further insights into the links between PITP dysfunction and an inherited disease in a higher eukaryote.The Drosophila retinal degeneration B protein (RdgB)1 plays a critical role in the fly photoreceptor cell. The rdgB mutant phenotype is characterized by retinal degeneration whose onset, while discernible in dark-reared flies, is greatly accelerated by raising the flies in light (Harris and Stark, 1977; Stark et al., 1983). Typically, rdgB mutant flies begin to exhibit the morphological hallmarks of photoreceptor cell degeneration several days after eclosion (Harris and Stark, 1977; Stark et al., 1983). In addition, these mutant flies exhibit an abnormal light response, as recorded by the rapid deterioration of the electroretinogram (ERG), shortly after the fly''s initial exposure to light. This ERG defect is manifested before any obvious physical signs of retinal degeneration (Harris and Stark, 1977), which suggests that the defect in the light response may precipitate the course of retinal degeneration.In the photoreceptor cell, RdgB localizes to both the axon and the subrhabdomeric cisternae (SRC) (Vihtelic et al., 1993; Suzuki and Hirosawa, 1994). The SRC is an extension of the endoplasmic reticulum that functions both as an intracellular Ca2+ store and a compartment through which rhodopsin traffics en route to the rhabdomere (Walz, 1982; Matsumoto-Suzuki et al., 1989; Suzuki and Hiosawa, 1991). Thus, RdgB is the first identified protein required for visual transduction that is not localized in the photoreceptor rhabdomere. Genetic epistasis analyses suggest RdgB functions downstream of both rhodopsin and phospholipase C (PLC) in the visual transduction cascade as both the ninaE (encoding the opsin expressed in photoreceptor cells R1-6 [O''Tousa et al., 1985; Zuker et al., 1985]) and norpA (encoding phospholipase C [Bloomquist et al., 1988]) mutations suppress the rdgB-dependent, light-enhanced retinal degeneration (Harris and Stark, 1977; Stark et al., 1983). Consistent with this view, constitutive activation of the Drosophila G protein transducin analogue (DGq), either by application of nonhydrolyzable GTP analogues or by expression of a constitutively activated Gα subunit (Dgq1), effects a rapid degeneration of rdgB retinas in the absence of light (Rubinstein et al., 1989; Lee et al., 1994). RdgB apparently functions downstream of the inaC-encoded protein kinase C (PKC) because: (a) application of phorbol ester to rdgB mutant retinas, which presumably activates the inaC-encoded PKC, stimulates retinal degeneration in the absence of light (Minke et al., 1990); and (b) the rdgB retinal degeneration is weakly suppressed by the inaC mutation (Smith et al., 1991). Thus, the available evidence identifies an execution point for RdgB downstream of PKC in the visual transduction cascade.RdgB is a 116-kD membrane polypeptide with six potential transmembrane domains (Vihtelic et al., 1991). Additionally, the amino-terminal 281 RdgB residues share 42% amino acid identity with the rat brain phosphatidylinositol (PI) transfer protein α isoform (PITPα) (Vihtelic et al., 1993). Whereas PITPs are operationally defined by their ability to catalyze the transfer of either PI or phosphatidylcholine (PC) monomers between membrane bilayers in vitro (Bankaitis et al., 1990; Cleves et al., 1991; Wirtz, 1991), how the phospholipid transfer activity pertains to in vivo function is less clear. The yeast PITP (Sec14p) uses its PI and PC binding activities in two independent, yet complementary, ways that serve to preserve a Golgi pool of diacylglycerol that is critical for the biogenesis of Golgi-derived secretory vesicles (Kearns et al., 1997). Reconstitution studies suggest that mammalian PITPs play important roles in PLC-mediated inositol signaling, ATP-dependent, Ca2+-activated secretion, and constitutive secretion from the trans-Golgi network (Hay and Martin, 1993, 1995; Thomas et al., 1993, 1995; Ohashi et al., 1995). However, because the PITP requirement for these processes is generally satisfied by any PITP (even those lacking any primary sequence identity), the physiological relevance of these PITP involvements remains to be determined (Skinner et al., 1993; Cunningham et al., 1995; Ohashi et al., 1995; Alb et al., 1996). The recent finding that the mouse vibrator mutation represents a hypomorphic mutation in the pitpn gene, which encodes PITPα, indicates that PITP function is important to neuronal function (Hamilton et al., 1997). RdgB''s PITP domain (when expressed as a soluble protein in Escherichia coli) is able to effect intermembrane transfer of PI in vitro (Vihtelic et al., 1993). Unlike all previously characterized PITPs, which are 32–35-kD soluble proteins (Bankaitis et al., 1989; Cleves et al., 1991; Wirtz, 1991), RdgB is a large integral membrane protein. In spite of postulated in vivo activities for PITPs, the function of RdgB in the photoreceptor cell remains unknown. Recently, vertebrate orthologues of the rdgB gene were identified in mice, bovines, and humans (Chang et al., 1997). Expression of the mouse rdgB cDNA in rdgB2 null mutant flies resulted in the elimination of the retinal degeneration and complete restoration of the wild-type ERG light response (Chang et al., 1997). Thus, the Drosophila RdgB protein defines a new class of functionally equivalent transmembrane PITPs.In this work, we analyzed RdgB''s involvement in the Drosophila phototransduction cascade and the mechanism by which it prevents the onset of retinal degeneration. This represents the first in vivo analysis of the transmembrane PITP class, and we report several novel and unanticipated aspects of RdgB function. We demonstrate that the complete repertoire of RdgB functions essential for normal phototransduction reside in the PITP domain. Expression of this domain as a soluble polypeptide fully complements the rdgB2 null allele. Yet, other PITPs that possess PI and/ or PC transfer activities in vitro cannot substitute for RdgB in the photoreceptor cell. Whereas the recessive rdgB2 null mutation demonstrates an essential role for RdgB in proper termination of the ERG light response and dark recovery of the photoreceptor cell, one novel dominant rdgB mutation affects the maintenance of steady- state rhodopsin levels in photoreceptor cells. Another dominant rdgB mutation induces retinal degeneration and compromises the rapid regeneration of a wild-type ERG light-response amplitude subsequent to multiple or prolonged light exposure. Taken together, these data indicate an underlying complexity to the mechanism of RdgB function and its role in the photoreceptor cell that is not easily reconciled with a simple role in potentiating signal transduction via phosphoinositide-driven signaling pathways.  相似文献   
23.
Polarized membrane morphogenesis is a fundamental activity of eukaryotic cells. This process is essential for the biology of cells and tissues, and its execution demands exquisite temporal coordination of functionally diverse membrane signaling reactions with high spatial resolution. Moreover, mechanisms must exist to establish and preserve such organization in the face of randomizing forces that would diffuse it. Here we identify the conserved AtSfh1 Sec14-nodulin protein as a novel effector of phosphoinositide signaling in the extreme polarized membrane growth program exhibited by growing Arabidopsis root hairs. The data are consistent with Sec14-nodulin proteins controlling the lateral organization of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) landmarks for polarized membrane morphogenesis in plants. This patterning activity requires both the PtdIns(4,5)P2 binding and homo-oligomerization activities of the AtSfh1 nodulin domain and is an essential aspect of the polarity signaling program in root hairs. Finally, the data suggest a general principle for how the phosphoinositide signaling landscape is physically bit mapped so that eukaryotic cells are able to convert a membrane surface into a high-definition lipid-signaling screen.  相似文献   
24.
Unapposed connexin hemichannels exhibit robust closure in response to membrane hyperpolarization and extracellular calcium. This form of gating, termed “loop gating,” is largely responsible for regulating hemichannel opening, thereby preventing cell damage through excessive flux of ions and metabolites. The molecular components and structural rearrangements underlying loop gating remain unknown. Here, using cysteine mutagenesis in Cx50, we demonstrate that residues at the TM1/E1 border undergo movement during loop gating. Replacement of Phe43 in Cx50 with a cysteine resulted in small or no appreciable membrane currents. Bath application of dithiothreitol or TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl) ethylenediamine), reagents that exhibit strong transition metal chelating activity, led to robust currents indicating that the F43C substitution impaired hemichannel function, producing “lock-up” in a closed or poorly functional state due to formation of metal bridges. In support, Cd2+ at submicromolar concentrations (50–100 nm) enhanced lock-up of F43C hemichannels. Moreover, lock-up occurred under conditions that favored closure, indicating that the sulfhydryl groups come close enough to each other or to other residues to coordinate metal ions with high affinity. In addition to F43C, metal binding was also found for G46C, and to a lesser extent, D51C substitutions, positions found to be pore-lining in the open state using the substituted-cysteine accessibility method, but not for A40C and A41C substitutions, which were not found to reside in the open pore. These results indicate that metal ions access the cysteine side chains through the open pore and that closure of the loop gate involves movement of the TM1/E1 region that results in local narrowing of the large aqueous connexin pore.Connexins are a large family of homologous integral membrane proteins that form gap junction (intercellular) channels that provide a direct communication pathway between neighboring cells. Gap junctions are formed by the docking of two hemichannels, which themselves can function in an undocked or unapposed configuration as ion channels that signal across the plasma membrane. Each hemichannel is composed of a hexamer of connexin subunits. The accepted membrane topology of a connexin subunit has four transmembrane domains (TM1–TM4)3 and two extracellular loops (E1 and E2) with amino and carboxyl termini located intracellularly (reviewed in Ref. 1).Connexin cell-cell channels and hemichannels are voltage dependent and two distinct voltage-sensitive gating mechanisms appear to be built into each hemichannel (2). One gating mechanism proposed to be located at the cytoplasmic end of the hemichannel is termed Vj gating, a name derived from studies of gap junction (cell-cell) channels describing sensitivity to transjunctional voltage, Vj, the voltage difference between coupled cells. The other gating mechanism is putatively ascribed to the extracellular end of the hemichannel and has been provisionally termed loop gating, because of the resemblance of gating transitions to those associated with initial opening of newly formed cell-cell channels (3, 4), a process that conceivably involves the extracellular loop domains.Loop gating is a robust gating mechanism that together with extracellular divalent cations, principally Ca2+, is largely responsible for keeping unapposed hemichannels closed at resting membrane potentials (5). Reports have suggested that extracellular divalent cations act as gating particles that enter and block the pore upon hyperpolarization (6, 7). An alternative model was recently proposed whereby extracellular divalent cations act as modulators of loop gating, an intrinsically voltage-sensitive mechanism, by stabilizing the closed conformation and shifting activation such that opening occurs at more positive potentials (8).Although loop gating plausibly involves conformational changes associated with the extracellular loops, molecular components underlying loop gating as well as the location of the putative gate remain unknown. A recent study using chick homologues to the mammalian connexins, Cx46 and Cx50, reported that two charged residues were important determinants of the different gating characteristics exhibited by these two connexin hemichannels (9). The implicated residues are at position 9 located in the NH2-terminal domain and position 43 in the E1 domain. In Cx46 hemichannels, Glu43 and other flanking residues at the TM1/E1 border (Ala39, Gly46, and Asp51) were shown to reside in the aqueous pore in the open state (10). Because it is likely that domains involved in permeation and gating of connexin channels are closely linked (reviewed in Ref. 11), we examined whether these residues are involved in structural rearrangements associated with loop gating. In this study, we engineered cysteines at residues in the TM1/E1 border in Cx50 hemichannels and used the ability of sulfhydryl groups to form disulfide bonds and/or to complex with heavy metal ions to report conformational changes that occur during gating.  相似文献   
25.
Phosphatidylinositol/phosphatidylcholine transfer proteins (PITPs) remain largely functionally uncharacterized, despite the fact that they are highly conserved and are found in all eukaryotic cells thus far examined by biochemical or sequence analysis approaches. The available data indicate a role for PITPs in regulating specific interfaces between lipid-signaling and cellular function. In this regard, a role for PITPs in controlling specific membrane trafficking events is emerging as a common functional theme. However, the mechanisms by which PITPs regulate lipid-signaling and membrane-trafficking functions remain unresolved. Specific PITP dysfunctions are now linked to neurodegenerative and intestinal malabsorption diseases in mammals, to stress response and developmental regulation in higher plants, and to previously uncharacterized pathways for regulating membrane trafficking in yeast and higher eukaryotes, making it clear that PITPs are integral parts of a highly conserved signal transduction strategy in eukaryotes. Herein, we review recent progress in deciphering the biological functions of PITPs, and discuss some of the open questions that remain.  相似文献   
26.
Putidaredoxin (Pdx) is an 11,400-Da iron-sulfur protein that sequentially transfers two electrons to the cytochrome P450cam during the enzymatic cycle of the stereospecific camphor hydroxylation. We report two transitions in the Pdx UV-VIS absorption and circular dichroism (CD) temperature dependencies, occurring at 16.3+/-0.5 degrees C and 28.4+/-0.5 degrees C. The 16.3 degrees C transition is attributed to the disruption of the hydrogen bonding of the active center bridging sulfur atom with cysteine 45 and alanine 46. The transition at 28.4 degrees C occurs exclusively in the Pdx(ox) at very nearly the same temperature as the earlier reported biphasicity in the redox potential. The formal potential temperature slope constancy reflects the relative stability of the concentration ratio of both oxidation states. The lower temperature transition affects both Pdx(red) and Pdx(ox) to a comparable extent, and their concentration ratio remains constant. In contrast, the 28.4 degrees C transition preferentially destabilizes Pdx(ox) thereby accelerating the formal potential negative shift and lower redox reaction entropy. There is evidence to suggest that disrupting hydrogen bonding of the iron ligating cysteines 45, 39 with residues threonine 47, serine 44, glycine 41, and serine 42 causes the 28.4 degrees C transition. The sensitivity of the UV-VIS absorption and CD spectroscopy to subtle structural protein backbone transitions is demonstrated.  相似文献   
27.
28.
The growing demand for bioenergy increases pressure on peatlands. The novel strategy of wet peatlands agriculture (paludiculture) may permit the production of bioenergy from biomass while avoiding large greenhouse gas emissions as occur during conventional crop cultivation on drained peat soils. Herein, we present the first greenhouse gas balances of a simulated paludiculture to assess its suitability as a biomass source from a climatic perspective. In a rewetted peatland, we performed closed‐chamber measurements of carbon dioxide, methane, and nitrous oxide exchange in stands of the potential crops Phragmites australis, Typha latifolia, and Carex acutiformis for two consecutive years. To simulate harvest, the biomass of half of the measurement spots was removed once per year. Carbon dioxide exchange was close to neutral in all tested stands. The effect of biomass harvest on the carbon dioxide exchange differed between the 2 years. During the first and second year, methane emissions were 13–63 g m?2 a?1 and 2–5 g m?2 a?1, respectively. Nitrous oxide emissions lay below our detection limit. Net greenhouse gas balances in the study plots were close to being climate neutral during both years except for the Carex stand, which was a source of greenhouse gases in the first year (in CO2‐equivalents: 18 t ha?1 a?1). Fifteen years after rewetting the net greenhouse gas balance of the study site was similar to those of pristine fens. In addition, we did not find a significant short‐term effect of biomass harvest on net greenhouse gas balances. In our ecosystem, ~17 t ha?1 a?1 of CO2‐equivalent emissions are saved by rewetting compared to a drained state. Applying this figure to the fen area in northern Germany, emission savings of 2.8–8.5 Mt a?1 CO2‐equivalents could possibly be achieved by rewetting; this excludes additional savings by fossil fuel replacement.  相似文献   
29.
Sec14, a yeast phosphatidylinositol/phosphatidylcholine transfer protein, functions at the trans-Golgi membranes. It lacks domains involved in protein-protein or protein-lipid interactions and consists solely of the Sec14 domain; hence, the mechanism underlying Sec14 function at proper sites remains unclear. In this study, we focused on the lipid packing of membranes and evaluated its association with in vitro Sec14 lipid transfer activity. Phospholipid transfer assays using pyrene-labelled phosphatidylcholine suggested that increased membrane curvature as well as the incorporation of phosphatidylethanolamine accelerated the lipid transfer. The quantity of membrane-bound Sec14 significantly increased in these membranes, indicating that “packing defects” of the membranes promote the membrane binding and phospholipid transfer of Sec14. Increased levels of phospholipid unsaturation promoted Sec14-mediated PC transfer, but had little effect on the membrane binding of the protein. Our results demonstrate the possibility that the location and function of Sec14 are regulated by the lipid packing states produced by a translocase activity at the trans-Golgi network.  相似文献   
30.
Sec14-superfamily proteins integrate the lipid metabolome with phosphoinositide synthesis and signaling via primed presentation of phosphatidylinositol (PtdIns) to PtdIns kinases. Sec14 action as a PtdIns-presentation scaffold requires heterotypic exchange of phosphatidylcholine (PtdCho) for PtdIns, or vice versa, in a poorly understood progression of regulated conformational transitions. We identify mutations that confer Sec14-like activities to a functionally inert pseudo-Sec14 (Sfh1), which seemingly conserves all of the structural requirements for Sec14 function. Unexpectedly, the "activation" phenotype results from alteration of residues conserved between Sfh1 and Sec14. Using biochemical and biophysical, structural, and computational approaches, we find the activation mechanism reconfigures atomic interactions between amino acid side chains and internal water in an unusual hydrophilic microenvironment within the hydrophobic Sfh1 ligand-binding cavity. These altered dynamics reconstitute a functional "gating module" that propagates conformational energy from within the hydrophobic pocket to the helical unit that gates pocket access. The net effect is enhanced rates of phospholipid-cycling into and out of the Sfh1* hydrophobic pocket. Taken together, the directed evolution approach reveals an unexpectedly flexible functional engineering of a Sec14-like PtdIns transfer protein-an engineering invisible to standard bioinformatic, crystallographic, and rational mutagenesis approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号