全文获取类型
收费全文 | 205篇 |
免费 | 15篇 |
专业分类
220篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 3篇 |
2020年 | 1篇 |
2019年 | 4篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 7篇 |
2014年 | 6篇 |
2013年 | 5篇 |
2012年 | 8篇 |
2011年 | 16篇 |
2010年 | 4篇 |
2009年 | 9篇 |
2008年 | 12篇 |
2007年 | 9篇 |
2006年 | 14篇 |
2005年 | 5篇 |
2004年 | 8篇 |
2003年 | 5篇 |
2002年 | 10篇 |
2001年 | 10篇 |
2000年 | 10篇 |
1999年 | 4篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 6篇 |
1991年 | 9篇 |
1990年 | 3篇 |
1989年 | 6篇 |
1988年 | 5篇 |
1987年 | 4篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1973年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1921年 | 2篇 |
1908年 | 1篇 |
1907年 | 1篇 |
1900年 | 2篇 |
排序方式: 共有220条查询结果,搜索用时 14 毫秒
41.
The dithionite-mediated addition of BrCF(2)Cl to 3,4-di-O-pivaloyl-D-xylal (1) generated preferably 1-CF(2)Cl-substituted products, that is, (2-bromo-2-deoxy-3,4-di-O-pivaloyl-beta-D-xylopyranosyl)-chlorodifluoromethane and (2-deoxy-3,4-di-O-pivaloyl-beta-D-threo-pentopyranosyl)-chlorodifluoromethane. Selected chlorodifluoromethyl-substituted monosaccharide derivatives were hydrodechlorinated or alkylated at the CF(2)Cl-group using tin reagents under radical reaction conditions. Thus, hydrodechlorinations of (2,3,4-tri-O-acetyl-6-deoxy-alpha-L-galactopyranosyl)-chlorodifluoromethane and of methyl 3,4-di-O-acetyl-2-C-chlorodifluoromethyl-2,6-dideoxy-alpha/beta-L-glucopyranoside are reported using tri-n-butyltin hydride initiated by AIBN. UV-initiated allylations are reported for reactions of (2-deoxy-3,4-di-O-pivaloyl-beta-D-threo-pentopyranosyl)-chlorodifluoromethane, (2,3,4-tri-O-acetyl-6-deoxy-alpha-L-galactopyranosyl)-chlorodifluoromethane, 1,3,4,6-tetra-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha-D-glucopyranose, 1,3,4,6-tetra-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha-D-mannopyranose and methyl 3,4-di-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha/beta-D-rabinopyranoside with allyltri-n-butyltin. 相似文献
42.
The pharmacologic regulation of interleukin-1 production: the role of prostaglandins 总被引:4,自引:0,他引:4
The role of prostaglandins in the regulation of lipopolysaccharide (LPS)-induced interleukin-1 (IL-1) production by murine C3H/HeN resident peritoneal macrophages was studied. IL-1 production was initially studied in the presence of piroxicam and indomethacin, both inhibitors of prostaglandin biosynthesis. IL-1 was assayed using the IL-1-dependent proliferative response of C3H/HeJ thymocytes. LPS stimulation resulted in 15 to 20 ng/ml of prostaglandin E2 (PGE2) produced in the first hour of culture. IL-1-containing supernatants from drug-treated macrophages at dilutions of up to 1:32 resulted in enhanced thymocyte proliferation compared to control, non-drug-treated cultures and contained less than 2 ng/ml of PGE2. Similar enhancement of proliferation could be obtained by incubating non-drug-treated supernatants with monoclonal anti-PGE2 but not anti-thromboxane B2 (TxB2) antibody. Further dilutions of the drug-treated supernatants gave thymocyte proliferation responses which were indistinguishable from control cultures and, correspondingly, had identical values for IL-1 production. The absence of an effect on IL-1 production was confirmed by quantitation of intracellular IL-1 alpha using goat anti-IL-1 alpha antibody and by quantitation of supernatant IL-1 receptor competition assay. Exogenous PGE2, in the concentration range produced in macrophage supernatants (10-20 ng/ml), directly inhibited IL-1-stimulated thymocyte proliferation. Finally, when macrophages were stimulated with LPS for 24 hr in the presence of added PGE2, thymocyte proliferation was inhibited at the lowest supernatant dilutions, but as the IL-1-containing supernatants were diluted out, the assay curves were indistinguishable from non-PGE2-treated control. Thus, in this system, PGE2 has no effect on IL-1 synthesis, but rather has a direct inhibitory effect on thymocyte proliferation. Nonsteroidal anti-inflammatory drugs are not stimulating IL-1 production but are, in fact, relieving inhibition of the thymocyte IL-1 assay caused by the presence of prostaglandins. 相似文献
43.
J Bl?ser V Kn?uper A Osthues H Reinke H Tschesche 《European journal of biochemistry》1991,202(3):1223-1230
The mechanism of human polymorphonuclear leucocyte (PMNL) procollagenase activation by HgCl2 was investigated by kinetic and sequence analysis of the reaction products. HgCl2 activated PMNL procollagenase by intramolecular autoproteolytic cleavage of the Asn53-Val54 peptide bond to generate a collagenase species of Mr 65000, which was immediately converted into a second intermediate collagenase form by further autoproteolytic cleavage of the Asp64-Met65 peptide bond within the propeptide domain. This intermediate form (Met65 N-terminus) reached maximum concentrations after 45 min and displayed only about 40% of the maximum available enzymatic activity. Final activation was obtained after autoproteolytic cleavage of either Phe79-Met80 or Met80-Leu81 peptide bonds. Furthermore, activation in the presence of TIMP-1 did not suppress the intramolecular autoproteolytic cleavage of the Asn53-Val54 peptide bond. Complete inhibition of further autoproteolytic decay of the enzyme or generated peptides was observed, which was obviously due to complex formation between the intermediate collagenase form (Val54 N-terminus) and inhibitor, which was visualized using the Western blot technique. Thus PMNL procollagenase activation by HgCl2 followed a three-step activation mechanism which is entirely different from the known activation mechanisms of the fibroblast matrix metalloproteinases. 相似文献
44.
45.
46.
The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in (1)H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations. 相似文献
47.
48.
49.
50.